

As Assessment:

Understanding of independent/dependent and mutually exclusive/non-mutually exclusive events

Rubric:					
Be able to distinguish between					
independent/dependent, using formulas of	Level R:	Level 1:	Level 2:	Level 3:	Level 4:
P(A and B) = P(A) times P(B A)	Incomplete	Limited	Some	Considerable	In-depth
Be able to distinguish between mutually					
exclusive/non-mutually exclusive events, using	Level R:	Level 1:	Level 2:	Level 3:	Level 4:
formulas of	Incomplete	Limited	Some	Considerable	In-depth
P(A or B) = P(A) + P(B) - P(A and B)					

- 1. Given P(A) = 0.375, P(B) = 0.625, P(A or B) = 0.75
 - a) Are they mutually exclusive or non-mutually exclusive?
 - b) Calculate P (A and B)
 - c) Calculate P (B|A)

- 2. Given P(A) = 0.4, P(B) = 0.6, P(B|A) = 0.5
 - a) Are they independent or dependent?
 - b) Find out P (A and B)
 - c) Find out P (A or B)
 - d) Find out P (A | B)

1. Given P(A) = 0.375, P(B) = 0.625, P(A or B) = 0.75 $\frac{3}{8}$ a) Are they mutually exclusive or non-mutually exclusive? b) Calculate P (A and B) c) Calculate P (B|A) a) : P(A) + P(B). + P(AorB) " they are non-mutually exclusive b) P(A and B) = P(A) + P(B) - P(A or B)= 1 - 0,75 = 0,25 c). $P(B/A) = \frac{P(A \text{ and } B)}{P(A)} = \frac{0.25}{0.525} = \frac{1}{4} \times \frac{8}{3} = \frac{2}{3}$ 2. Given P(A) = 0.4, P(B) = 0.6, P(B|A) = 0.5 a) Are they independent or dependent? b) Find out P (A and B) c) Find out P (A or B) d) Find out P (A|B) a) $\therefore P(B) \neq P(B/A)$ i tley are dependent. b) .P(A and B) = P(A) × P(B/A) = 0.4×0.5=0.2 c). P(A or B) = P(A) + P(B) - P(A and B) = 0, b+ 0, 4 - 0, 2=0, 8. d). $P(A/B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{O(2)}{O(6)} = \frac{1}{2} (\approx 0.35)$