Unit 2: Polynomial Functions Chapter 3.4: Transformation

Determining Transformed functions from graphs and equations:

$$y = af[k(x-d)] + c$$

For any single point, the transformations can be summarized as mapping notation:

$$(x,y) \rightarrow (\frac{x}{k}+d,ay+c)$$

Example 1: Reasoning about the order of transformations

Write mapping notation, and describe the steps of transformations that must be applied to $y = x^3$ (parent function) to graph $y = -8(\frac{1}{2}x + 1)^3 - 3$, and then graph both parent function and this newly transformed function.

Practice:

Write mapping notation, and describe the steps of transformations that must be applied to $y = x^4$ (parent function) to graph $y = -3[-2(x-1)]^4 + 1$, and then graph both parent function and this newly transformed function.

In Summary

Key Ideas

• The polynomial function $y = a(k(x - d))^n + c$ can be graphed by applying transformations to the graph of the parent function $y = x^n$, where $n \in \mathbb{N}$. Each

point (*x*, *y*) on the graph of the parent function changes to $\left(\frac{x}{k} + d, ay + c\right)$.

• When using transformations to graph a function in the fewest steps, you can apply a and k together, and then c and d together.

Need to Know

- $\ln y = a(k(x d))^n + c$,
 - the value of a represents a vertical stretch/compression and possibly a vertical reflection
 - the value of k represents a horizontal stretch/compression and possibly a horizontal reflection
 - the value of *d* represents a horizontal translation
 - the value of c represents a vertical translation

In Summary

Key Ideas

• Transformations on a function y = af(k(x - d)) + c must be performed in a particular order: horizontal and vertical stretches/compressions (including any reflections) must be performed before translations. All points on the graph of the parent function y = f(x) are changed as follows: $(x, y) \rightarrow \left(\frac{x}{k} + d, ay + c\right)$

• When using transformations to graph, you can apply a and k together, and then c and d together, to get the desired graph in the fewest number of steps.

Need to Know

- The value of a determines whether there is a vertical stretch or compression, or a reflection in the *x*-axis:
 - When |a| > 1, the graph of y = f(x) is stretched vertically by the factor |a|.
 - When 0 < |a| < 1, the graph is compressed vertically by the factor |a|.
 - When *a* < 0, the graph is also reflected in the *x*-axis.
- The value of k determines whether there is a horizontal stretch or compression, or a reflection in the *v*-axis:
 - When |k| > 1, the graph is compressed horizontally by the factor $\frac{1}{|k|}$.
 - When 0 < |k| < 1, the graph is stretched horizontally by the factor $\frac{1}{|k|}$.
 - When k < 0, the graph is also reflected in the *v*-axis.
- The value of *d* determines whether there is a horizontal translation:
 - For d > 0, the graph is translated to the right.
 - For d < 0, the graph is translated to the left.
- The value of c determines whether there is a vertical translation:
 - For c > 0, the graph is translated up.
 - For c < 0, the graph is translated down.