Unit 3 – Rational Functions Chapter 5.2 – 5.3: Quotients of Polynomial functions

Rational functions can be expressed as $f(x) = \frac{p(x)}{q(x)}$, where p(x) and q(x) are polynomial functions.

With the function q(x) in the denominator, we need to consider any <u>discontinuities</u> where q(x) = 0.

• A <u>hole</u> will occur at x = a if both p(x) and q(x) have a common factor of (x - a).

For example: $y = \frac{(x-1)}{(x-1)(x+2)}$ has a hole when x = 1

A <u>vertical asymptote</u> (V.A.) will occur at x = a when q(x) = 0

For example: $y = \frac{(x+1)(x-2)}{(x-1)(x+2)}$ has vertical asymptote at x = 1 and x = -2

There are also horizontal asymptotes, they tells the end behavior of the rational functions.

The function $f(x) = \frac{p(x)}{q(x)}$ has a horizontal asymptote (H.A.) if <u>order of $p(x) \le order \ of \ q(x)$ </u>:

• x - axis (or y = 0) is the equation of H.A if order of p(x) < order of q(x)

For example: $y = \frac{1}{(x+2)}$ and $y = \frac{(x-1)}{(x+1)(x+2)}$ both have H.A at y = 0

• The <u>ratio of leading coefficient</u> is the equation of H.A if order of p(x) = order of q(x)

For example: $y = \frac{2(x-1)(x+3)}{(x+1)(x+2)}$ has H.A at y = 2

Other than vertical and horizontal asymptote, **<u>oblique/slant asymptote</u>** also tells how does rational functions look like.

• Oblique asymptote only happens when order of p(x) - 1 = order of q(x), the quotient of long division is the equation of O.A.

(i.e., order of p(x) is greater than the order of q(x) by exactly 1)

For example: $y = \frac{2(x-1)(x+3)}{(x+1)}$, O.A is: _____

Practice:

Analyze each function and predict the location of any VERTICAL asymptotes, HORIZONTAL asymptotes, HOLES (points of discontinuity), *x*- and *y*-INTERCEPTS, DOMAIN, and RANGE.

Characteristic	$y = \frac{2x - 1}{x - 7}$	$y = \frac{x^2 + 5x}{x^2 + 7x + 10}$	$y = \frac{x^2 - 7x + 12}{x^2 - 9}$	$y = \frac{2x^2 + 5x - 3}{x + 3}$
Vertical Asymptote(s) Analyze Denominator				
Horizontal Asymptote(s) Analyze Degrees of Polynomial (num/den) (m <n, m="">n)</n,>				
HOLES Point(s) of Discontinuity Simplify the Rational Function by factoring				
x-intercept(s) Set y=0				
y-intercept Set x=0				
Domain				
Range				

Example 1:

Let
$$f(x) = \frac{3x-1}{x^2-2x-3}$$
, $g(x) = \frac{x^3+8}{x^2+9}$, $h(x) = \frac{x^3-3x}{x+1}$, and $m(x) = \frac{x^2+x-12}{x^2-4}$.

- a) Which of these rational functions has a horizontal asymptote?
- **b**) Which has an oblique asymptote?
- c) Which has no vertical asymptote?
- d) Graph y = m(x), showing the asymptotes and intercepts.

Example 5: Sketch $y = \frac{x^2+4}{x+1}$.

Steps to determine oblique/slant asymptote:

1) perform long division,

2) regardless of the remainder, take quotient as the equation of oblique asymptote.

Practice:

 $y = -\frac{x-4}{-4x-16}$

Practice: Write equations and matching

Write a rational function with the given characteristics.

- 1. There are no zeros, a hole exists at x = -3/2, vertical asymptote is at x = 1, and horizontal asymptote is at y = 0.
- 2. The zeros are at -1 and 3 and the vertical asymptote is at x = 0.
- 3. The zero is at 2, vertical asymptote is at x = -2 and x = 0, and horizontal asymptote is at y = 0.

Match the following graphs with the equation

$f(x) = \frac{x^3 - 9x}{3x^2 - 6x - 9}$	10. $f(x) = \frac{x^2 - x - 12}{x^2 - 2x - 8}$	11. $f(x) = \frac{x^3 + 1}{x^2 - 1}$
factor		
НА:		
VA:		
roots:		
holes:		
graph: A B C	graph: A B C	graph: A B C
A.	B. x = 1	C.

Extra practice:

Match the equation of each rational function with the most appropriate graph. Explain your reasoning.

Write the equation for each graphed rational function.

