Unit 4 – Trigonometry

<u> Chapter 6.1 – 6.3: Radian measure for angles and Radian angles in Cartesian plane</u>

Part I: Radian measure and Angular Speed

Radian Measure

An angle measurement can be defined as the ratio of the arc length to the radius of a circle:

 $\theta = \frac{a}{r}$

For a full circle, the arc length is the circumference: $C = 2\pi r$,

Therefore, the angle described by a full circle is: $360^{\circ} = \frac{2\pi r}{r} = 2\pi = 1$ rotation

The way to inter-change radian and degree:

 $\therefore 2\pi \ radian = 360^{\circ}$

 $\therefore 1 radian = \frac{360^{\circ}}{2\pi} = \frac{180^{\circ}}{\pi}$, whereas $1 degree = \frac{2\pi}{360^{\circ}} = \frac{\pi}{180^{\circ}}$

Example 1: convert each of the following angles

- a) 20°
- b) 225°
- c) $\frac{5\pi}{6}$
- d) 1.75 radian

Example 2:

The London Eye Ferris wheel has a diameter of 135 m and completes one revolution in 30 min.

a) Determine the angular velocity, ω , in radians per second.

b) How far has a rider travelled at 10 min into the ride?

Part II: Radian angles in Cartesian plane

• Recall: For any angle of interest (θ), there are three primary trigonometric ratios.

Need to Know

• The trigonometric ratios for any principal angle, θ , in standard position can be determined by finding the related acute angle, β , using coordinates of any point that lies on the terminal arm of the angle.

From the Pythagorean theorem, $r^2 = x^2 + y^2$, if r > 0.

$$\sin \theta = \frac{y}{r} \qquad \cos \theta = \frac{x}{r} \qquad \tan \theta = \frac{y}{x}$$
$$\csc \theta = \frac{r}{y} \qquad \sec \theta = \frac{r}{x} \qquad \cot \theta = \frac{x}{y}$$

S

0

- The CAST rule is an easy way to remember which primary trigonometric ratios are positive in which quadrant. Since *r* is always positive, the sign of each primary ratio depends on the signs of the coordinates of the point.
 - In quadrant 1, All (A) ratios are positive because both x and y are positive.
 - In quadrant 2, only Sine (S) is positive, since x is negative and y is positive.
 - In quadrant 3, only **T**angent (T) is positive because both *x* and *y* are negative.
 - In quadrant 4, only **C**osine (C) is positive, since *x* is positive and *y* is negative.

Example 2: Evaluate . a) $sin\frac{5\pi}{3}$ b) $cos \frac{5\pi}{4}$ Example 3: Solve $tan\theta = -\frac{7}{24}$ for θ is between 0 and 2 π .