Unit 4 – Trigonometric Identities and Solving Trig Equations Chapter 7.1: Equivalent Trigonometric Functions

Due to the periodic nature of trigonometric functions, there are multiple ways to express equivalent functions.

1) Using the period:

Both sine and cosine have a period of 2π , which means any phase shift by a multiple of the period will be equivalent.

 $sinx = sin(x + 2\pi) = sin(x - 2\pi)$

 $cosx = cos(x + 2\pi) = cos(x - 2\pi)$

 $cscx = csc(x + 2\pi) = csc(x - 2\pi)$

 $secx = sec(x + 2\pi) = sec(x - 2\pi)$

For tangent and cotangent, $tanx = tan(x + \pi) = tan(x - \pi)$ and $cotx = cot(x + \pi) = cot(x - \pi)$

2) By symmetry:

Recall, even functions: f(x) = f(-x)

odd functions: f(-x) = -f(x)

Cosine and Secant are even (reflective symmetry across the y-axis):

cosx = cos(-x), sec(-x) = -secx

Sine, cosecant, tangent, and cotangent are odd (rotational symmetry):

$$sin(-x) = -sinx, \ csc(-x) = -cscx, \ tan(-x) = -tanx, \ cot(-x) = -cotx$$

3) Using C.A.S.T rule:

Recall: you can identify equivalent trigonometric expressions by comparing principal angles drawn in standard position in quadrants II, III, and IV with their related acute angle, θ , in quadrant I.

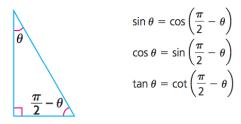
Principal Angle in Quadrant II	Principal Angle in Quadrant III	Principal Angle in Quadrant IV
$\sin(\pi- heta)=\sin heta$	$\sin(\pi + \theta) = -\sin\theta$	$\sin\left(2\pi-\theta\right)=-\sin\theta$
$\cos\left(\pi-\theta\right)=-\cos\theta$	$\cos(\pi + \theta) = -\cos\theta$	$\cos\left(2\pi-\theta\right)=\cos\theta$
$ an(\pi- heta)=- an heta$	$\tan(\pi + \theta) = \tan \theta$	$\tan (2\pi - \theta) = -\tan \theta$

4) Using complimentary angles:

Recall: Complimentary angles add to $\frac{\pi}{2}$ (or 90°)

$sin\frac{\pi}{3} =$	$\cos\frac{\pi}{6} =$	$\csc\frac{\pi}{3} =$	$\sec \frac{\pi}{6} =$
$\cos\frac{\pi}{3} =$	$sin\frac{\pi}{6} =$	$\sec \frac{\pi}{3} =$	$\csc\frac{\pi}{6} =$
$tan\frac{\pi}{3} =$	$\cot\frac{\pi}{6} =$	$\cot\frac{\pi}{3} =$	$tan\frac{\pi}{6} =$

Hence: The above pattern is defined by <u>Cofunction Identities</u> by which describe trigonometric relationships between the complementary angles θ and $(\frac{\pi}{2} - \theta)$ in a right triangles.



Example 1: Use R.A.A and cofunction identities to write an expression that is equivalent to each of the following expressions.

a)
$$\sec \frac{2\pi}{3} =$$

b)
$$\tan \frac{7\pi}{6} =$$

Practice:

Use the cofunction identities to write an expression that is equivalent to each of the following expressions.

		0 1		
a)	$\sin \frac{\pi}{6}$	c) $\tan \frac{3\pi}{8}$	e)	$\sin \frac{\pi}{8}$
b)	$\cos\frac{5\pi}{12}$	d) $\cos \frac{5\pi}{16}$	f)	$\tan\frac{\pi}{6}$

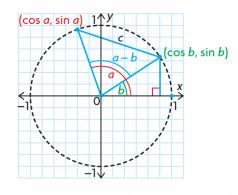
Write an expression that is equivalent to each of the following expressions, using the related acute angle.

1		0		0	
a)	$\sin \frac{7\pi}{8}$	c)	$\tan\frac{5\pi}{4}$	e)	$\sin \frac{13\pi}{8}$
	0		Т		0
b)	$\cos\frac{13\pi}{12}$	d)	$\cos\frac{11\pi}{6}$	f)	$\tan\frac{5\pi}{3}$

State whether each of the following are true or false. For those that are false, justify your decision.

a)	$\cos\left(\theta+2\pi\right)=\cos\theta$	d)	$ an\left(\pi- heta ight)= an heta$
b)	$\sin(\pi-\theta)=-\sin\theta$	e)	$\cot\left(\frac{\pi}{2}+ heta ight)= an heta$
c)	$\cos\theta=-\cos\left(\theta+4\pi\right)$	f)	$\sin(\theta+2\pi)=\sin(-\theta)$

Unit 4 – Trigonometric Identities and Equations Chapter 7.2: Compound angle formulas



By the cosine law, $c^2 = 1^2 + 1^2 - 2(1)(1)\cos(a - b)$ (1) $c^2 = 2 - 2\cos(a - b)$

However, c has endpoints of $(\cos a, \sin a)$ and $(\cos b, \sin b)$. By the distance formula, $c = \sqrt{(\sin a - \sin b)^2 + (\cos a - \cos b)^2}$ Squaring both sides, $c^2 = (\sin a - \sin b)^2 + (\cos a - \cos b)^2$ $c^2 = \sin^2 a - 2 \sin a \sin b + \sin^2 b + \cos^2 a - 2 \cos a \cos b + \cos^2 b$ $c^2 = \sin^2 a + \cos^2 a - 2 \sin a \sin b - 2 \cos a \cos b + \sin^2 b + \cos^2 b$ $c^2 = 1 - 2 \sin a \sin b - 2 \cos a \cos b + 1$ (2) $c^2 = 2 - 2 \sin a \sin b - 2 \cos a \cos b$

Equating (1) and (2), $2 - 2\cos(a - b) = 2 - 2\sin a \sin b - 2\cos a \cos b$ Solving for $\cos(a - b)$, $\cos(a - b) = \sin a \sin b + \cos a \cos b$

In Summary

Key Idea

• The trigonometric ratios of compound angles are related to the trigonometric ratios of their component angles by the following compound angle formulas.

Addition Formulas

Subtraction Formulas

 $\sin (a + b) = \sin a \cos b + \cos a \sin b$ $\cos (a + b) = \cos a \cos b - \sin a \sin b$ $\tan (a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$

$$\sin (a - b) = \sin a \cos b - \cos a \sin b$$
$$\cos (a - b) = \cos a \cos b + \sin a \sin b$$
$$\tan (a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Example 1: Determine the exact value of b) $tan(-\frac{5\pi}{12})$ a) $cos(\frac{\pi}{12})$ Example 2: Simplify each expression a) $\cos \frac{7\pi}{12} \cos \frac{5\pi}{12} + \sin \frac{7\pi}{12} \sin \frac{5\pi}{12}$ b) sin2xcosx - cos2xsinx Example 3: If a is an angle in quadrant I and b is an angle in quadrant II, evaluate sin(a + b), where $sina = \frac{3}{5}$ and

 $sinb = \frac{5}{13}.$

Example 4:

Simplify $\frac{\sin (f+g) + \sin (f-g)}{\cos (f+g) + \cos (f-g)}.$