

Unit 5 – Exponential and Logarithmic functions Chapter 8.1 – 8.2: The logarithmic function and its graph

Many phenomena in the natural sciences (physics, chemistry, biology, astronomy) can be descried using exponential functions. To solve problems involving a function, it is often useful to use the inverse function.

Invented by John Napier in the 17th century, logarithmic functions (and the associated table of values generated using them) were the only effective numerical tools for dealing with exponential functions until the development of computers and calculator.

Some applications of logarithmic functions include:

- pH levels (acid/base) in chemistry
- Star brightness
- Sound intensity in physics/music
- Light intensity & absorption in physics/astronomy
- Richter scale for earthquakes in physics/geology

Teacher: Ms. Ella

Concentration of hydrogen ions of to distilled wate	of ompared er	Examples of solutions at this pH									
10 000 000	pH = 0	battery acid, strong hydrofluoric acid									
1000 000	pH = 1	hydrochloric acid secreted by stomach lining									
100 000	pH = 2	lemon juice, gastric acid, vinegar									
10 000	pH = 3	grapefruit, orange juice, soda									
1000	pH = 4	tomato juice, acid rain									
100	pH = 5	soft drinking water, black coffee									
10	pH = 6	urine, saliva									
1	pH = 7	"pure" water									
$\frac{1}{10}$	pH = 8	seawater									
$\frac{1}{100}$	pH = 9	baking soda									
$\frac{1}{1000}$	pH = 10	Great Salt Lake, milk of magnesia									
$\frac{1}{10000}$	pH = 11	ammonia solution									
$\frac{1}{100000}$	pH = 12	soapy water									
$\frac{1}{1000000}$	pH = 13	bleaches, oven cleaner									
1 10 000 000	pH = 14	liquid drain cleaner									

 $m_1-m_{
m ref}=-2.5\log_{10}iggl(rac{I_1}{I_{
m ref}}iggr)$

1576 Dundas Street West, Mississauga ON L5C 1E5 www.teacademy.ca Tel: 905-232-1576

www.teacademy.ca Email: info@teacademy.ca

Teacher: Ms. Ella

x	0	I 2 3	4 5 6	7 8 9		123	4 5 6 ADD	7 8 9	×		,	I	2	3	4	ś	6	7	8	9.	Δ ₁₀₆ +	I 2 3	ADD	71
10 11 12	·0000 ·0414 ·0792	0043 0086 0128 0453 0492 0531 0828 0864 0899	0170 0212 0212 0253 0569 0607 0607 0645 0934 0969	0294 0334 0374 0682 0719 0755	42 40 39 37 35	4 8 13 4 8 12 4 8 12 4 7 11 4 7 11	17 21 25 16 20 24 16 19 23 15 19 22 14 18 21	29 34 38 28 32 36 27 31 35 26 30 33 25 28 32	50 51 53 53	· · · · · · · · · · · · · · · · · · ·	90 76 60 43	6998 7 7084 7 7168 7 7251 7	0007 093 177 259	7016 7101 7185 7267	7024 7110 7193 7275	7033 7118 7202 7284	7042 7126 7210 7292	7050 7135 7218 7300	7059 7143 7226 7308	7067 7152 7235 7316	9 8 8 8 8	I 2 3 I 2 2 I 2 2 I 2 2	445	6 7 6 6 6 6
13	-1139	1173 1206 1239	1271 1303 1303 1335	1367 1399 1430	34 33 32	3710 3710 3610	14 17 20 13.16 20 13 16 19	24 27 31 23 26 30 22 26 29	54	•74	104 182	7412 7 7490 7	419	7340 7427 7505	7435	7304 7443 7520	7451 7528	7459	7300 7466 7543	7390	889	I 2 2 I 2 2	345	66
15 16	·1761 ·2041	1492 1523 1553 1790 1818 1847 2068 2095 2122	1584 1014 1044 1875 1903 1931 2148 2175 2201	1073 1703 1732 1959 <u>1987</u> 2014 2227 2253 2279	30 28 26	36 8 3 5 8	12 15 18 11 14 17 10 13 16	21 24 27 20 22 25 18 21 23	57 58 59	·76	34 109	7642 7 7716 7	574 649 723	7657 7731	7509	7597 7672 7745	7679	7686	7694 7767	7701 7774	87	I 2 2 I 2 2 I I 1	343	66
19 20	·2553 ·2788 ·3010	2330 2355 2360 2577 2601 2625 2810 2833 2856 3032 3054 3075	2405 2430 2455 2648 2672 2695 2878 2900 2923 3096 <u>3118</u> 3139	2480 2504 2529 2718 2742 2765 2945 2967 2989 3160 3181 3201	25 24 22 21	257 257 247 246	10 12 15 10 12 14 9 11 13 8 11 13	17 20 22 17 19 22 15 18 20 15 17 19	61 62 63	·78 ·78 ·79	53 24 93	77860 7 7931 7 8000 8	868 938 9007	7875 7945 8014	7882 7952 8021	7889 7959 8028	7825 7896 7966 8035	7832 7903 7973 8041	7839 7910 7980 8048	7917 7987 8055	7 7 7 7 7		344	5 6 5 6
21 22 23	·3222 ·3424 ·3617	3243 3263 3284 3444 3464 3483 3636 3655 3674	3304 <u>3324</u> 3345 3502 <u>3522</u> 3541 3692 3711 3729	3365 3385 3404 3560 3579 3598 3747 <u>3766</u> 3784	20 19 18	2 4 6 2 4 6 2 4 5	8 10 12 8 10 11 7 9 11	14 16 18 13 15 17 13 14 16	64	·80 ·81	062 129 195	8069 8 8136 8 8202 8	075 142 209	8082 8149 8215	8089 8156 8222	8096 8162 8228	8102 8169 8235	8109 8176 8241	8116 8182 8248	8122 8189 8254	7777	II2 II2 II2	334	50
24 25 26	·3802 ·3979 ·4150	3820 3838 3856 3997 4014 4031 4166 4183 4200	3874 3892 3909 4048 4065 4082 4216 4232 4249	3927 3945 3962 4099 4116 4133 4265 4281 4298	18 17 16	2 4 5 2 3 5 2 3 5	7 9 11 7 9 10 6 8 10	13 14 16 12 14 15 11 13 14	67 68 69	.8	161 325 388	8267 8 8331 8 8395 8	8274 8338 8401	8280 8344 8407	8287 8351 8414	8293 8357 8420	8299 8363 8426	8306 8370 8432	8312 8376 8439	8319 8382 8445	666	II2 II2 II2	234	4 5 4 5 4 5
27 28 29 30	-4314 -4472 -4624 -4771	4330 4340 4302 4487 4502 4518 4639 4654 4669 4786 4800 4814	4378 4393 4409 4533 4548 4564 4683 4698 4713 4829 4843 4857	4425 <u>4440</u> 4450 4579 4594 4609 4728 4742 4757 4871 4886 4900	10 15 15 14	2 3 5 2 3 5 1 3 4 1 3 4	6 8 10 6 8 9 6 7 9 6 7 8	11 13 14 11 12 14 10 12 13 10 11 13	70	·84	51 573 533	8457 8 8519 8 8579 8 8639 8	3525 3585 3645	8470 8531 8591 8651	8476 8537 8597 8657	8482 8543 8603 8663	8488 8549 8609 8669	8494 8555 8615 8675	8500 8561 8621 8681	8506 8567 8627 8686	0 6 6 6			4 5 4 5 4 5 4 4 5 4 4 5 4 4 5 4 5 4 5 4
31 32 33	-4914 -5051 -5185	4928 4942 4955 5065 5079 5092 5198 5211 5224	4969 4983 4997 5105 5119 5132 5237 5250 5263	5011 5024 5038 5145 5159 5172 5276 5289 5302	14 13 13	1 <u>3</u> 4 1 <u>3</u> 4 1 <u>3</u> 4	6 7 8 5 7 8 5 6 8	IO II I3 9 IO 12 9 IO 12	74 75 76	·80 ·87 ·87	592 751 308	8698 8 8756 8 8814 8	8704 8762 8820	8710 8768 8825	8716 8 <u>77</u> 4 8831	8722 8779 8837	8727 8785 8842	8733 8791 8848	8739 8797 8854	8745 8802 8859	666		23	4 4 5 4 5 4 4 5
34 35 36	-5315 -5441 -5563	5328 6340 5353 5453 5465 5478 5575 5587 5599	5366 5378 5391 5490 5502 5514 5611 5623 5635	5403 5416 5428 5527 5539 5551 5647 5658 5670	13 12 12	1 3 4 1 2 4 1 2 4	5 6 8 5 6 7 5 6 7	9 10 12 8 10 11 8 10 11	77	7 -81 8 -89 •89	865 921 976	8871 8 8927 8 8982 8	3876 3932 3987	8882 8938 8993	8887 8943 8998	8893 8949 9004	8899 8954 9009	8904 8960 9015	8910 8965 9020	8915 8971 9025	666		23	4 4 5 4 4 5 4 4 5
37 38 39 40	-5682 -5798 -5911 -6021	5694 5705 5717 5809 5821 5832 5922 5933 5944 6031 6042 6053	5729 5740 5752 5843 5855 5866 5955 5966 5977 6064 6075 6085	5763 5775 5786 5877 5888 5899 5988 5999 6010 6096 6107 6117	12 11 11 11	I 2 4 I 2 3 I 2 3 I 2 3 I 2 3	5 6 7 4 6 7 4 <u>6</u> 7 4 5 7	8 10 11 8 <u>9</u> 10 8 9 10 8 9 10	80 - 81 81 83	· · · · · · · · · · · · · · · · · · ·	031 085 138 191	9036 9 9090 9 9143 9 9196 9	9042 9096 9149 9201	9047 9101 9154 9206	9053 9106 9159 9212	9058 9112 9163 9217	9063 9117 9170 9170 9222	9069 9122 9174 9227	9074 9128 9180 9232	9079 9133 9186 9238	5 5 5 5 5		2 3 3 2 2 3 2 2 3 3 2 3	3 4 4 3 4 4 3 4 4 3 4 4
41 42 43	-6128 -6232 -6335	6138 6149 6160 6243 6253 6263 6345 6355 6365	6170 6180 <u>6191</u> 6274 6284 6294 6375 6 <u>3</u> 85 6395	6201 6212 6222 6304 6314 6325 6405 6415 6425	10 10 10	I <u>2</u> 3 I 2 <u>3</u> I 2 3	4 5 6 4 5 6 4 5 6	7 8 9 7 8 9 7 8 9 7 8 9	84 84 84	4 ·9: 5 ·9: 6 ·9:	243 294 345	9248 9 9299 9 9350 9	9253 9304 9355	9258 9309 9360	9263 9315 9365	9269 9320 9370	9274 9325 9375	9279 9330 9380	9284 9335 9385	9289 9340 9390	555		2 <u>3</u> 2 <u>3</u> 2 <u>3</u>	3 4.4 3 4 4 3 4 4
44 45 46	-6435 -6532 -6628	6444 6454 6464 6542 6551 6561 6637 6646 6656	6474 6484 6493 6571 6580 6590 6665 6675 6684	6503 6513 6522 6599 6609 6618 6693 6702 6712	10 10 9	I 2 3 I 2 3 I 2 3	4 5 6 4 5 6 4 5 5	7 8 9 7 8 9 6 7 8	8: 8: 8:	7 -9: 8 -9: 9 -9:	395 445 494	9400 9 9450 9 9499 9	9405 9455 9504	9410 9460 9509	9415 9465 9513	9420 9469 951	9425 9474 9523	9430 9479 9528	9435 9484 9533	9440 9489 9538	555	0 I I 0 I 0 I	2 2 1 2 2 1 2 2	3 3 4 3 3 4 3 3 4
47 48 49	-6721 -6812 -6902	6821 6830 6839 6911 6920 6928	6758 6767 6776 6848 6857 6866 6937 6946 6955	6964 6972 6981	999	1 2 3 1 2 3 1 2 3	4 5 5 4 4 5 4 4 5	6 7 8 6 7 8 6 7 8	99 91 92 92	0 ·9. 1 ·9. 2 ·9 3 ·9	542 590 638 685	9547 9 9595 9 9643 9 9689 9	9552 9600 9647 9694	9557 9605 9652 9699	9562 9609 9657 9703	9560 9614 966	95 9571 9619 9666 9713	9570 9624 9671 971	9581 9628 9675 9675 7 9722	9586 9633 9680 9727	5 5 5 5	0 I 0 I 0 I 0 I	1 2 2 1 2 2 1 2 2 1 2 2	3 3 4 3 3 4 3 3 4 3 3 4
	π = e =	No. log 3.14159 0.49714 2.71828 0.43429	$\ln x = \log_e x$ $\log x = \log_{10}$	$x = (1/M) \log_{10} x$ $x = M \log_{\theta} x$	()	M = 0 M = 0	No. •30259 0•3 •43429 1•6	log 6222 3778	94 92 94	4 ·9 5 ·9 6 ·9	731 777 823	9736 9782 9827	9741 9786 9832	9745 9791 9836	9750 9795 9841	975 980 984	4 9759 9805 5 9850	976 980 985	9768 9814 9859	9773 9818 9863	5 5 4	0 I 0 I 0 I	2 2 1 2 2 1 2 2	3 3 4 3 4 3 4

Recall:

The inverse of a linear function, such as f(x) = 2x + 1, is linear.

The inverse of a quadratic function, such as $g(x) = x^2$, has a shape that is congruent to the shape of the original function.

- To find an inverse, swap x and y
- A function and its inverse undo each other

Exponential relation: $y = a^x$, a > 0, $a \neq 1$; and Inverse relation is $x = a^y$, but there is no way to rearrange this algebraically, so we introduce a new representation – Logarithmic relation

 $y = log_a x, a > 0, a \neq 1$, read as "log to the base a of x"

The two most important logarithmic functions have bases of "10" and "e", so a special notation is given:

- $log_{10}x = logx$ is the "common log"
- $log_e x = lnx$ is the "natural log" where e = 2.718 is called "natural number".

The graph of Logarithmic Function:

• The general shape of the graph of the logarithmic function depends on the value of the base.

When a > 1, the exponential function is an increasing function, and the logarithmic function is also an increasing function.

 $y = a^{x}$ y = x $y = \log_{a^{x}}$

Write an equivalent exponential expression.

Teacher: Ms. Ella

$$log_2 32 = 5$$
 $log 1 = 0$

Write an equivalent logarithmic expression.

$$3^4 = 81$$
 $\frac{1}{16} = 4^{-2}$

- The *y*-axis is the vertical asymptote for the logarithmic function. The *x*-axis is the horizontal asymptote for the exponential function.
- The *x*-intercept of the logarithmic function is 1, while the *y*-intercept of the exponential function is 1.
- The domain of the logarithmic function is {x ∈ R | x > 0}, since the range of the exponential function is {y ∈ R | y > 0}.
- The range of the logarithmic function is {y ∈ R}, since the domain of the exponential function is {x ∈ R}.

Teacher: Ms. Ella

Transformation of Logarithmic functions

Example 1: Use transformations to sketch the function $y = -2 \log \left[\frac{1}{2}(x-4)\right] + 1$

Example 2: Connecting a geometric description of a function to an algebraic representation

The logarithmic function y = log x has been vertically compressed by a factor of 2/3, horizontally stretched by a factor of 4, and then reflected in the y-axis. It has also been horizontally translated so that the vertical asymptote is x = -2 and then vertically translated 3 units down. Write an equation of the transformed functions, and state its domain and range.

Teacher: Ms. Ella

Unit 5 – Exponential and Logarithmic functions Chapter 8.3: Evaluating Logarithms

Some general rules to evaluate logarithmic terms:

Example 1: Solve	Example 2: Evaluate	Example 3: Evaluate					
a) $y = log_3 3^2$	a) $log_{10}1$	a) $2^{\log_2 x}$					
b) $y = log_4 4^7$.	b) log_51	b) 5 ^{log₅x}					
In general: $log_a a^x = x$ (1)	In general: $log_a 1 = 0$ (2)	In general: $a^{log_a x} = x$ (3)					

Moreover, we can calculate the value of a logarithms by changing of the bases:

$$log_a x = \frac{log_{10}x}{log_{10}a}$$
(4)

Practice:

Eva	aluate.					
a)	$\log_6 \sqrt{6}$	c)	$\log_3 81 + \log_4 64$	e)	lo	g₅∛5
b)	$\log_5 125 - \log_5 25$	d)	$\log_2 \frac{1}{4} - \log_3 1$	f)	lo	$g_3\sqrt{27}$
Eva	aluate.					
a)	$\log_3 3^5$	c)	$4^{\log_4\frac{1}{16}}$		e)	$a^{\log_a^b}$
b)	5 ^{log,25}	d)	$\log_m m^n$		f)	$log_{\frac{1}{10}}1$

Application questions:

Teacher: Ms. Ella

- 11. The number of mold spores in a petri dish increases by a factor of 10 every week. If there are initially 40 spores in the dish, how long will it take for there to be 2000 spores?
- 12. Half-life is the time it takes for half of a sample of a radioactive element to decay. The function $M(t) = P(\frac{1}{2})^{\frac{t}{b}}$ can be used to calculate the mass remaining if the half-life is *b* and the initial mass is *P*. The half-life of radium is 1620 years.
 - a) If a laboratory has 5 g of radium, how much will there be in 150 years?
 - **b**) How many years will it take until the laboratory has only 4 g of radium?
- 13. The function $s(d) = 0.159 + 0.118 \log d$ relates the slope, s, of a beach to the average diameter, d, in millimetres, of the sand particles on the beach. Which beach has a steeper slope: beach A, which has very fine sand with d = 0.0625, or beach B, which has very coarse sand with d = 1? Justify your decision.