

Unit 6 – Exponential and Logarithmic functions Lesson 3: Logarithmic law

Recall: Exponent laws

Same base	Different bases		
$(a^x)(a^y) = a^{x+y}$	$(ab)^x = a^x b^x$		
$(a^{x}) \div (a^{y}) = \frac{a^{x}}{a^{y}} = a^{x-y}, a \neq 0$ $a^{-x} = \frac{1}{a^{y}} = a \neq 0$	$(\frac{a}{b})^x = \frac{a^x}{a^y} \cdot b \neq 0$		
$\begin{aligned} a^{x} &= a^{x}, a \neq 0 \\ (a^{x})^{y} &= a^{xy} \end{aligned}$			
$a^0=1$, $a eq 0$			

Similarly, Log will also have a set of laws by which can make their calculation much easier.

 $log_{a}xy = log_{a}x + log_{a}y$ $log_{a}\left(\frac{x}{y}\right) = log_{a}x - log_{a}y$ $log_{a}x^{r} = rlog_{a}x$

Example 1: simplify then evaluate.

- a) $log_36 + log_34.5$
- b) $log_2 48 log_2 3$
- c) $log_5 \sqrt[3]{25}$

Example 2: Rewrite as a single log to a common base: $log 12 + \frac{1}{2}log 7 - log 2$

Example 3: Compare and contrast the graphs of f(x) = log (1000x) and g(x) = 3 + log (x).

Teacher: Ms. Ella

Example 4: Use the properties of logarithms to express $log_a \sqrt{\frac{x^3y^2}{w}}$ in term of $log_a x$, $log_a y$, $log_a w$.

Practice from Textbook: pg475

2. Express each of the following as a logarithm of a product or quotient.

a)	log 5 +	log 7	d)	$\log x -$	log y
----	---------	-------	------------	------------	-------

- b) $\log_3 4 \log_3 2$ c) $\log_m a + \log_m b$ c) $\log_m a + \log_m b$ c) $\log_4 10 + \log_4 12 \log_4 20$

3. Express each of the following in the form $r \log_a x$. a) $\log 5^2$ c) $\log_m p^q$ e) $\log_7(36)^{0.5}$ **d**) $\log \sqrt[3]{45}$ f) $\log_5 \sqrt[5]{125}$ **b**) $\log_3 7^{-1}$

4. Use the laws of logarithms to simplify and then evaluate each K expression.

a) $\log_3 135 - \log_3 5$ c) $\log 50 + \log 2$ e) $\log_2 224 - \log_2 7$ **b**) $\log_5 10 + \log_5 2.5$ **d**) $\log_4 4^7$ **f**) $\log \sqrt{10}$

5. Describe how the graphs of $y = \log_2(4x)$, $y = \log_2(8x)$, and $y = \log_2\left(\frac{x}{2}\right)$ are related to the graph of $y = \log_2 x$.

6. Evaluate the following logarithms.

a)
$$\log_{25}5^3$$

b) $\log_654 + \log_62 - \log_63$
c) $\log_354 + \log_3\left(\frac{3}{2}\right)$

c)
$$\log_6 6\sqrt{6}$$
 f) $\log_8 2 + 3 \log_8 2 + \frac{1}{2} \log_8 16$

- 7. Use the laws of logarithms to express each of the following in terms of $\log_b x$, $\log_b y$, and $\log_b z$.
 - c) $\log_b x^2 y^3$ a) $\log_b xyz$ $d) \quad \log_b \sqrt{x^5 y z^3}$ **b**) $\log_b \left(\frac{z}{xy}\right)$
- 8. Explain why $\log_5 3 + \log_{5\frac{1}{3}} = 0$.

9. Write each expression as a single logarithm.

- **d)** $\log_3 12 + \log_3 2 \log_3 6$ a) $3 \log_5 2 + \log_5 7$
- **b)** $2 \log_3 8 5 \log_3 2$ **c)** $\log_4 3 + \frac{1}{2} \log_4 8 \log_4 2$ f) $2 \log 8 + \log 9 - \log 36$ c) $2 \log_2 3 + \log_2 5$

10. Use the laws of logarithms to express each side of the equation as a

single logarithm. Then compare both sides of the equation to solve.

- a) $\log_2 x = 2 \log_2 7 + \log_2 5$ d) $\log_7 x = 2 \log_7 25 - 3 \log_7 5$ **b)** $\log x = 2 \log 4 + 3 \log 3$ e) $\log_3 x = 2 \log_3 10 - \log_3 25$ c) $\log_4 x + \log_4 12 = \log_4 48$ f) $\log_5 x - \log_5 8 = \log_5 6 + 3 \log_5 2$
- **11.** Write each expression as a single logarithm. Assume that all the variables represent positive numbers.
 - a) $\log_2 x + \log_2 y + \log_2 z$ b) $\log_5 u \log_5 v + \log_5 w$ c) $\log_6 a (\log_6 b + \log_6 c)$ d) $\log_2 x^2 \log_2 xy + \log_2 y^2$ e) $1 + \log_3 x^2$ f) $3 \log_4 x + 2 \log_4 x \log_4 y$
- 12. Write $\frac{1}{2} \log_a x + \frac{1}{2} \log_a y \frac{3}{4} \log_a z$ as a single logarithm. Assume that all the variables represent positive numbers.
- **13.** Describe the transformations that take the graph of $f(x) = \log_2 x$ to the graph of $g(x) = \log_2(8x^3)$.
- 14. Use different expressions to create two logarithmic functions that have
- the same graph. Demonstrate algebraically why these functions have the same graph.

15. Explain how the laws of logarithms can help you evaluate $\log_3\left(\frac{\sqrt[5]{27}}{2187}\right)$ С

Extending

- **16.** Explain why $\log_x x^{m-1} + 1 = m$.
- **17.** If $\log_b x = 0.3$, find the value of $\log_b x \sqrt{x}$.

Teacher: Ms. Ella