## Rate Law

Chapter 6.5

### Rate Law

 A rate law is the mathematical equation that allows for the calculation of reaction rate from concentration of reactants at a given temperature and pressure

## Two Mathematical Expressions to Describe Reaction Rate:

$$A \longrightarrow 2B$$

- 1. Rate;  $-\Delta[A]/\Delta t = \frac{1}{2} (+\Delta[B]/\Delta t)$ 
  - Determined from stoichiometry
  - Uses both reactants & products
- 2. Rate Law; rate =k[A]<sup>m</sup>
  - Determined by experimental data-Stoichiometry of equation is irrelevant
  - Only reactants in rate law

### Rate Law Equation

 The rate law expresses the relationship of the rate of a reaction to the rate constant and the concentrations of the reactants raised to some powers.

$$aA + bB \longrightarrow cC + dD$$

Rate = 
$$k [A]^m [B]^n$$

k is the Rate Constant

m and n are determined experimentally, and do **not** depend on stoichiometric coefficients from balanced equation

### Order of Reaction

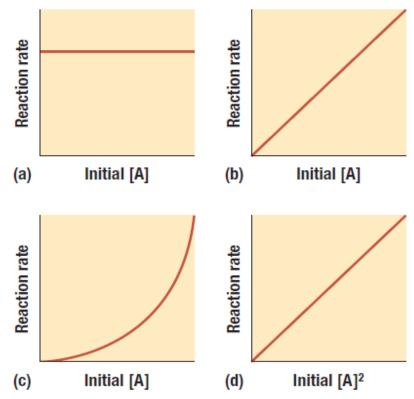
- The order of reaction is the exponent used to describe the relationship between the initial concentration of a particular reactant and the rate of reaction
- The reaction order tells us how quickly the rate will increase when the concentration increases

$$2A + 3B + 4C \longrightarrow products$$

Rate = 
$$k [A]^{1} [B]^{2} [C]^{0}$$

 The total order of reaction is the sum of the exponents in the rate law equation

## Example


The reaction

$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

has the rate law  $R = k [NO]^2 [H_2]$ 

- a) Determine the reaction order with respect to each of the reactants
- b) Determine the overall reaction order

### Order of Reaction



**Figure 2** When a series of kinetics experiments is performed on a given system, the rates of reaction are measured for different initial concentrations of a reactant. When the evidence is graphed, you may see one or more of these results.

- (a) In this plot,  $r \propto [A]^0$ . The reaction is zero order with respect to [A].
- (b) In this plot,  $r \propto [A]^1$ . The reaction is first order with respect to [A].
- (c) In this plot,  $r \propto [A]^n$ , where n is greater than 1.
- (d) In this plot,  $r \propto [A]^2$ . The reaction is second order with respect to [A].

# Determining the Exponents in a Rate Law

- 1. Measure the instantaneous rate of reaction before there are any significant changes in concentration of the reactants.
- 2. Carry out several runs using different initial concentrations, determining the initial rate resulting from each run.
- Compare these results to observe how the initial rate depends on the initial concentrations.

## Example

 The initial rate of the reaction A + B → C was measured for several different starting concentrations as shown in the table below.
Find the rate law.

| Experiment | [A]     | [B]     | Initial Rate            |
|------------|---------|---------|-------------------------|
|            | (mol/L) | (mol/L) | (mol/L·s)               |
| 1          | 0.100   | 0.100   | 4.0 x 10 <sup>-5</sup>  |
| 2          | 0.100   | 0.200   | 4.0 x 10 <sup>-5</sup>  |
| 3          | 0.200   | 0.100   | 16.0 x 10 <sup>-5</sup> |

## Example

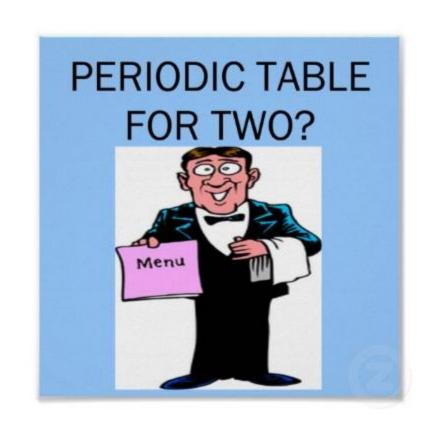
$$NH_4^+(aq) + NO_2^- \to N_2(g) + 2H_2O(l)$$

| Experiment<br>Number | Initial $NH_4^+$<br>Concentration ( <i>M</i> ) | Initial $NO_2^-$<br>Concentration ( <i>M</i> ) | Observed Initial Rate $(M/s)$ |
|----------------------|------------------------------------------------|------------------------------------------------|-------------------------------|
| 1                    | 0.0100                                         | 0.200                                          | $5.4 \times 10^{-7}$          |
| 2                    | 0.0200                                         | 0.200                                          | $10.8 \times 10^{-7}$         |
| 3                    | 0.0400                                         | 0.200                                          | $21.5 \times 10^{-7}$         |
| 4                    | 0.0600                                         | 0.200                                          | $32.3 \times 10^{-7}$         |
| 5                    | 0.200                                          | 0.0202                                         | $10.8 \times 10^{-7}$         |
| 6                    | 0.200                                          | 0.0404                                         | $21.6 \times 10^{-7}$         |
| 7                    | 0.200                                          | 0.0606                                         | $32.4 \times 10^{-7}$         |
| 8                    | 0.200                                          | 0.0808                                         | $43.3 \times 10^{-7}$         |

#### Find the Rate Law

### **HOMEWORK**

### Required Reading:


p. 375-382

(remember to supplement your notes!)

#### **Questions:**

p. 380 #1-5

p. 382 #1-4

