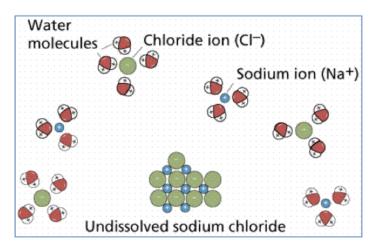
Chapter 8.6 Acid-Base Properties of Salt

Learning Goals: I will be able to...

- 1. Identify and determine whether an aqueous solution is neutral, acidic or basic from its salt.
- 2. Know the solution produce by dissolve metal oxide or non-metal oxide in water


Salts in Solution

 A salt is an ionic solid that contains cations and anions in a repeating crystalline pattern

Salts are electrolytes (they dissociate into ions) when they dissolve in

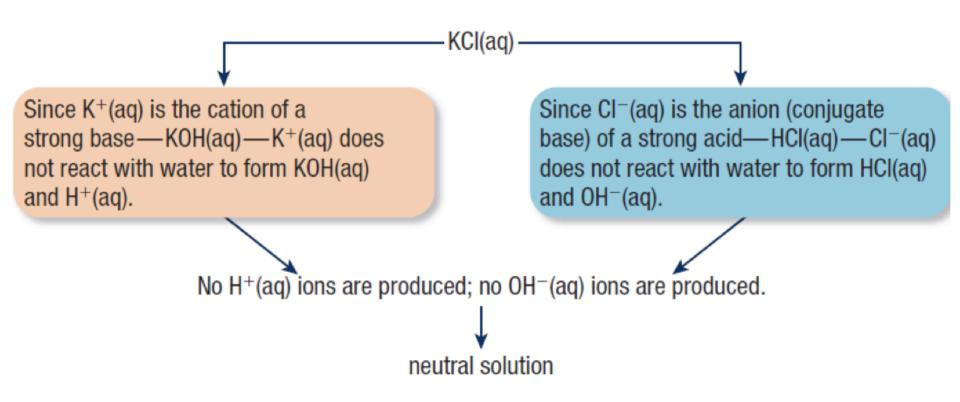
water

NaCl(s) 🔄 Na+(aq) + Cl-(aq)

- Neutral salts produce neither hydrogen ions or hydroxide ions when they dissolve in water
- Basic salts will increase the hydroxide ion concentration when they dissolve in water
- Acidic salts will increase the hydrogen ion concentration when dissolved in water

Salts That Produce Neutral Solutions

Example – solution of MgBr₂, salt of strong acid and strong base


Formation:
$$2HBr_{(aq)} + Mg(OH)_{2(aq)} \rightarrow 2H_2O_{(I)} + MgBr_{2(aq)}$$

Dissolution: $MgBr_{2(aq)} \rightarrow Mg^{2+}_{(aq)} + 2Br_{(aq)}$

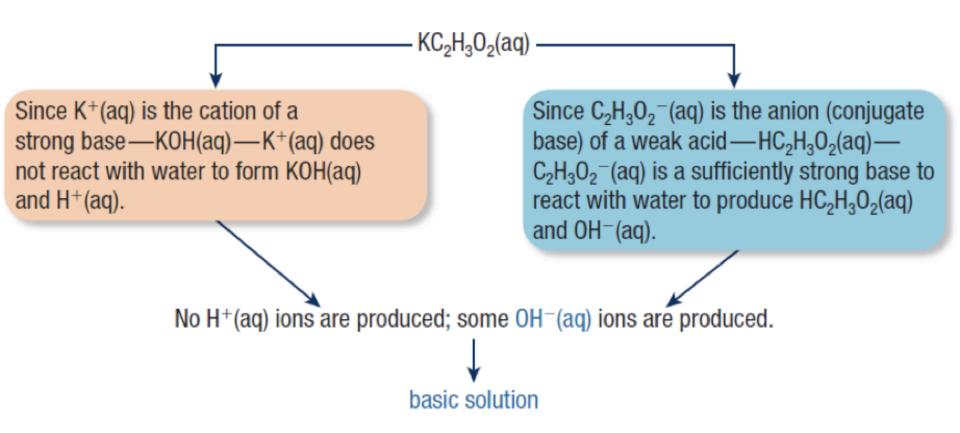
Weak conjugate acid of strong base
$$Mg^{2+}_{(aq)} + H_2O_{(I)}$$
 No reaction

Weak conjugate
$$\longrightarrow$$
 Br⁻(aq) + H₂O_(I) No reaction base of strong acid

Weak conjugate acid and base do not hydrolyze (do not react with water) \rightarrow pH = 7

Salts That Produce Neutral Solutions

Salts That Produce Basic Solutions


Example – aqueous solution of NH_4NO_3 , which is salt of strong acid (HNO_3) and weak base (NH_3) :

Formation:
$$HNO_{3(aq)} + NH_{3(aq)} \rightarrow NH_4NO_{3(aq)}$$

Dissolution: $NH_4NO_{3(aq)} \rightarrow NH_4^+_{(aq)} + NO_3^-_{(aq)}$

Weak conjugate base of strong acid
$$NO_3^-_{(aq)} + H_2O_{(I)} \rightarrow H_3O^+_{(aq)} + NH_3^-_{(aq)} + NH_3^-_{(aq)$$

Conjugate acid of the weak base is strong thus it will hydrolyze → pH < 7

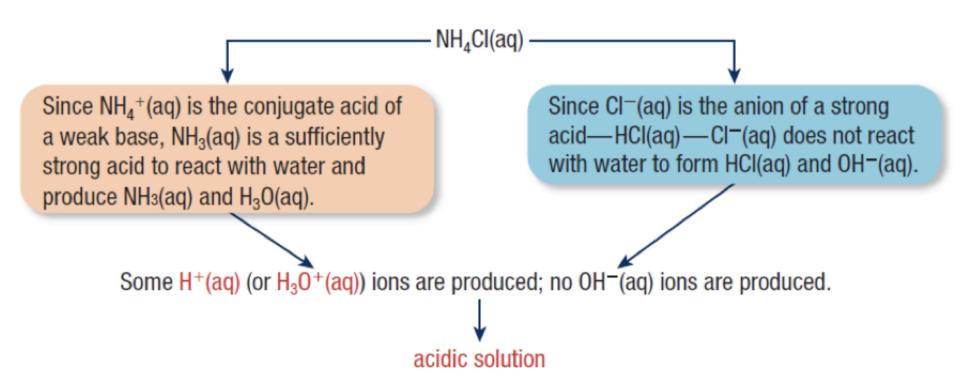
Salts That Produce Basic Solutions

Salts That Produce Acidic Solutions

Example – solution of NaF, salt of weak acid and strong base

Formation: NaOH_(aq) + HF_(aq)
$$\rightarrow$$
 H₂O_(I) + NaF_(aq)

Dissolution: NaF_(aq) \rightarrow Na⁺_(aq) + F⁻_(aq)


Weak conjugate acid of strong base

Na⁺_(aq) + H₂O_(I) \rightarrow No reaction

Strong conjugate of weak acid on!

Conjugate base of a weak acid is strong, it will hydrolyze pH > 7

Salts That Produce Acidic Solutions

Salt of Weak Acid/Weak Base

- Conjugate base of the weak acid will hydrolyze, as will the conjugate acid of the weak base. One must look at the pK_a and pK_b to predict the pH of solution.

Example – solution of $C_2H_5NH_3C_7H_5O_2$, (ethylammonium benzoate), salt of weak acid and weak base

Formation: $C_7H_5O_2H_{(aq)} + C_2H_5NH_{2(aq)} \rightarrow C_2H_5NH_3C_7H_5O_{2(aq)}$

Dissolution: $C_2H_5NH_3C_7H_5O_{2(aq)} \rightarrow C_2H_5NH_3^{+}_{(aq)} + C_7H_5O_2^{-}_{(aq)}$

Strong conjugate acid of weak base

$$\hookrightarrow$$
 $C_2H_5NH_{3(aq)}^+ + H_2O_{(I)} \rightleftharpoons H_3O_{(aq)}^+ + C_2H_5NH_{2(aq)}$ Reaction!

Strong conjugate
$$C_7H_5O_2^{-}_{(aq)} + H_2O_{(I)} \rightleftharpoons C_7H_5O_2H_{(aq)} + OH_{(aq)}^{-}$$
 Reaction!

How do we predict which wins out in this competition?

Salt of Weak Acid/Weak Base

- If $K_a > K_b$, the solution will be acidic.
- If K_a< K_b, the solution will be basic.
- If $K_a = K_b$, the solution will be neutral.

Practice

Calculate the pH of a 0.20 mol/L solution of ammonium chloride NH₄Cl_(aq)

Table 3 Acid-Base Properties of Various Types of Salts

Type of salt	Examples	Comment	pH of solution
Cation of a Group 1 or Group 2 element, other than Be; anion is from strong acid	KCI(aq), NaCI(aq), NaNO ₃ (aq)	Neither of the ions acts as an acid or a base	neutral
Cation of a Group 1 or Group 2 element, other than Be; anion is from weak acid	NaC ₂ H ₃ O ₂ (aq), KCN(aq), NaF(aq)	Anion acts as a base; cation has no effect on pH	basic
Cation is conjugate acid of weak base; anion is from strong acid	NH ₄ Cl(aq), NH ₄ NO ₃ (aq)	Cation acts as an acid; anion has no effect on pH	acidic
Cation is conjugate acid of weak base; anion is conjugate base of weak acid	NH ₄ C ₂ H ₃ O ₂ (aq), NH ₄ CN(aq)	Cation acts as an acid; anion acts as a base	acidic if $K_a > K_b$ basic if $K_b > K_a$ neutral if $K_a = K_b$
Cation is highly charged metal ion; anion is from strong acid	Al(NO ₃) ₃ (aq), FeCl ₃ (aq)	Hydrated cation acts as an acid; anion has no effect on pH	acidic

Hydrolysis of Amphiprotic Ions

```
NaHSO<sub>4</sub>(aq) \rightarrow Na<sup>+</sup>(aq) + HSO<sub>4</sub><sup>-</sup>(aq)

(dissociation)

HSO<sub>4</sub><sup>-</sup>(aq) + H<sub>2</sub>O(l) \rightleftharpoons H<sub>3</sub>O<sup>+</sup>(aq) + SO<sub>4</sub><sup>2-</sup>(aq) K_a = 1.2 \times 10^{-2}

(acid hydrolysis)

HSO<sub>4</sub><sup>-</sup>(aq) + H<sub>2</sub>O(l) \rightleftharpoons OH<sup>-</sup>(aq) + H<sub>2</sub>SO<sub>4</sub>(aq) K_b = very small

(base hydrolysis)
```

Hydrolysis of Metallic and Non-metallic Oxides

 Metallic oxides dissolve in water to produce basic solutions

$$CaO(s) + H_2O(l) \rightleftharpoons Ca^{2+}(aq) + 2OH^{-}(aq)$$

 Non-metallic oxides dissolve in water to produce acidic solutions

$$CO_2(g) + H_2O(l) \rightleftharpoons H_2CO_3(aq)$$

 $H_2CO_3(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$
 $CO_2(g) + 2 H_2O(l) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$ (net equation)

Did You Learn?

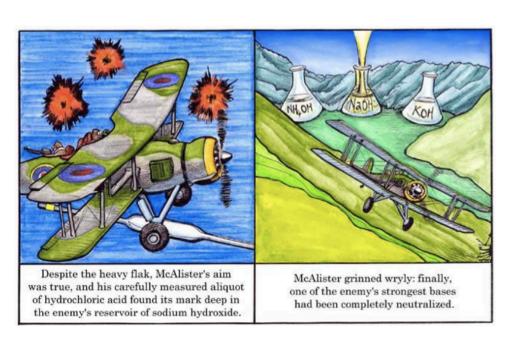
- For a salt solution in which the anion is the conjugate base of a weak acid, and the cation does not react with water, the aqueous solution is basic.
- For a salt solution in which the cation is the conjugate acid of a weak base, and the anion does not react with water, the aqueous solution is acidic.
- If neither the anion nor the cation is a conjugate base or acid, the ions will not affect the pH of the aqueous solution.
- If the salt has an anion and a cation that can both hydrolyze water, look at the K_b and K_a values of the anion and cation.
 - If $K_a > K_b$, the solution will become more acidic
 - If $K_a < K_b$, the solution will become more basic
 - If $K_a = K_b$, the solution will be neutral
- Metallic oxides form basic solutions and non-metallic oxides form acidic solutions.

HOMEWORK

Required Reading:

p. 531 – 539

(remember to supplement your notes!)


Questions:

P. 534 #1, 2

P. 536 #1, 2

P. 538 #1, 2

P. 539 #2, 4, 5

