2A – 1.4 Limit of a Function and 1.5 Properties of Limits

Lesson Goals:

- Be able to evaluate a limit using substitution
- Be able to evaluate a limit of indeterminant form using a variety of algebraic strategies

1) Limits

• Limits allow us to calculate the behaviour of an expression (or function) at points infinitely close to a value, called the limiting factor.

$$\lim_{x \to 2} (4x^2 + 9x - 1)$$

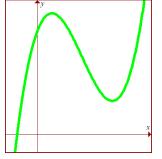
- We will use limits to:
 - Find slope of tangents
 - Find the end behaviour of functions, as $x \to \pm \infty$, $y \to ?$
 - o Find behaviour as function approaches a vertical asymptote

2) Limits of Polynomial Functions

• Polynomial functions, P(x), are continuous at every number, so $\lim_{x \to a} P(x) = P(a)$.

Example 1: Evaluate.

a)
$$\lim_{x \to 5} (x^2 + 2x - 3)$$
 b) $\lim_{x \to 4} (x^3 + 7x)$

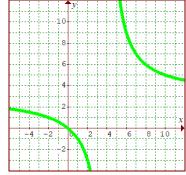


3) Limits of Rational Functions

• Rational functions, $\frac{P(x)}{Q(x)}$, are continuous at most numbers, so $\lim_{x \to a} \frac{P(x)}{Q(x)} = \frac{P(a)}{Q(a)} \text{ only if } Q(a) \neq 0.$

Example 2: Evaluate.

a)
$$\lim_{x \to -2} \left(\frac{3x}{x-4} \right)$$



b)
$$\lim_{x \to 4} \left(\frac{3x}{x-4} \right)$$
 c) $\lim_{x \to 10} \left(\frac{3x}{x-4} \right)$

4) Indeterminate Form

- Substitution may not give enough information to determine the value of a limit.
- The limit may be an indeterminate form.
- After substitution, indeterminate form may look like:

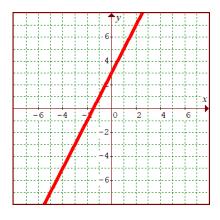
$$\frac{0}{0}$$
 $\frac{\infty}{\infty}$ $0(\infty)$ 1^{∞} $\infty - \infty$ 0^{0} ∞^{0}

- If one of the above appears, we must start over:
 - Use algebra to simplify the limit expression
 - Then try substitution again

5) Indeterminant Form $\frac{0}{0}$

Example 3: Evaluate.

- Strategy #1: factor, divide out, substitute
- a) $\lim_{x \to -1} \left(\frac{2x^2 + 5x + 3}{x + 1} \right)$



b)
$$\lim_{h \to 0} \left(\frac{(2+h)^2 - 4}{h} \right)$$

Example 4: Evaluate.

• Strategy #2: multiply by common denominator, divide out, substitute

a)
$$\lim_{x \to -1} \left(\frac{4 + \frac{4}{3x + 2}}{x + 1} \right)$$
 b) $\lim_{x \to 2} \left(\frac{\frac{1}{3x} - \frac{1}{6}}{x - 2} \right)$

Example 5: Evaluate.

• Strategy #3: multiply by the conjugate, divide out, substitute

a) $\lim_{x \to 9} \left(\frac{\sqrt{x-3}}{x-9} \right)$	b) $\lim_{x \to 2} \left(\frac{x-2}{\sqrt{x+2}-\sqrt{2x}} \right)$
---	---

Example 6: Evaluate.

• Strategy #4: substitute a "nice" expression, divide out, substitute

a) l	$\lim_{x \to 9} \left(\frac{\sqrt{x} + 3}{x - 9} \right)$	b)	$\lim_{x \to -8}$	$\left(\frac{2+\sqrt[3]{x}}{8+x}\right)$
------	--	----	-------------------	--

6) Summary of Limit Strategies

- Try substitution first!
 - If you get "undefined", $\frac{k}{0}$, $k \in R$, $k \neq 0$, then "no limit exists" (usually due to a vertical asymptote).
 - o If you get a real number answer, the number is the answer to the limit question.
 - If you get "indeterminate" $\frac{0}{0}$, you need to try one (or more) of the technique below:
 - If the limit's denominator is a polynomial:
 - Fully factor, cancel and state restrictions, then try substituting again.
 - If the limit has a square root:
 - Rationalize the denominator or numerator by multiplying by the conjugate, cancel and state restrictions, then try substitution again. Note: for hard questions, you may need to rationalize twice!
 - If the limit is made up of compound or complicated looking fractions (a fraction in a fraction):
 - Fully simplify the fraction into simplest form, cancel and state restrictions, then try substitution again
 - If the limit has variable with cube or fourth roots, or rational exponent:
 - Change the variable so that the expression is easier to work with, factor, cancel and state restrictions, and then try substituting again

Homework: Worksheet (Optional: Page 45 #4, 6-9)

1.4 Limit of a Function and 1.5 Properties of Limits Worksheet

- 7. $\lim_{x \to -3} \frac{x^2 2x 15}{x^2 + 10x + 21}$ 13. $\lim_{x \to 2} \frac{\sqrt{2x-2}}{x-2}$
14. $\lim_{x \to 5} \frac{\sqrt{x+4}-3}{x-5}$ 1. $\lim_{x \to 3} (2x - 5)$ 8. $\lim_{x \to -2} \frac{6x + 12}{x^2 + 3x + 2}$ 2. $\lim_{x \to -1} \frac{3x+4}{x-1}$ 15. $\lim_{x \to 2} \frac{\frac{4}{x-5}}{x+1}$ 9. $\lim_{x \to 1} \frac{x^2 - x - 2}{x^2 - 2x + 1}$ 3. $\lim_{x \to 5} \frac{x-1}{x-5}$ 10. $\lim_{x \to -1} \frac{(x^2 - 1)(x + 1)}{x^4 - 1}$ 11. $\lim_{x \to 9} \frac{\sqrt{x} - 1}{x - 8}$ 4. $\lim_{x \to -5} \frac{x+5}{x^2-25}$ 16. $\lim_{x \to 2} \frac{\frac{1}{x} - \frac{1}{2}}{x - 2}$ 5. $\lim_{x \to 2} \frac{x^3 - 8}{x^2 + x - 6}$ 17. $\lim_{x \to -3} \frac{\frac{1}{3x} + \frac{1}{9}}{x+3}$ 12. $\lim_{x \to 1} \frac{\sqrt{x}-1}{x-1}$ 6. $\lim_{x \to 0} \frac{4x^3 - x^2}{x^2 + 10x}$ 18. $\lim_{x \to 1} \frac{\frac{1}{2x-3}+1}{x-1}$
- 19. $\lim_{x \to 8} \frac{\sqrt[3]{x-2}}{x-8} \rightarrow \text{Let } \sqrt[3]{x} = a$, then $x = a^3$, and factor the denominator using difference of cubes.
- 20. $\lim_{x \to 16} \frac{\sqrt[4]{x-2}}{x-16} \rightarrow \text{Let } \sqrt[4]{x} = a$, then $x = a^4$, and FULLY factor the denominator using difference of squares.

21.
$$\lim_{x \to 4} \frac{\sqrt{x}-2}{\sqrt{x^3}-8}$$
 22.
$$\lim_{x \to 1} \frac{x^{1/6}-1}{x-1}$$
 23.
$$\lim_{x \to 0} \frac{(x+8)^{1/3}-2}{x}$$

Unofficial Answers:

1. 1		6. 0	12. $\frac{1}{2}$	16. $-\frac{1}{4}$	20. $\frac{1}{32}$
2. –	$-\frac{1}{2}$	72	13. $\frac{1}{2}$	17. $-\frac{1}{27}$	21. $\frac{1}{12}$
	o limit	86 9. No limit	14. $\frac{1}{6}$	182	22. $\frac{1}{6}$
4. –	$-\frac{1}{10}$	10. 0	-	19. $\frac{1}{12}$	1
5. $\frac{1}{5}$	2	11. 2	15. $\frac{8}{15}$	12	23. $\frac{1}{12}$