Defining the Limit

$$\lim_{x \to a} f(x) = L$$

"the limit of f(x) as x approaches a equals L"

Consider a possible meaning for:

Feb 5-10:21 PM

Ex.1 Evaluate or explain each limit for the graph (see worksheet)

Summary:

- (1) $\lim_{x\to a} f(x)$ may exist even if f(a) is undefined e.g., x=a is a hole of the limit exists if and only if the limiting value from the
- left is equal to the limiting value from the right.
- (3) The limit may be positive or negative infinity, but only if each of the one-sided limits gives the same result.

For example:

If
$$\lim_{x\to a^-}f(x)=+\infty$$
 and $\lim_{x\to a^+}f(x)=+\infty$

then
$$\lim_{x \to a} f(x) = +\infty$$

Feb 6-12:18 AM

$$\lim_{x \to 1} f(x) \quad \text{for} \quad f(x) = \begin{cases} x - 1 & \text{if } x < 1 \\ 1 & \text{if } x = 1 \\ 2 + \sqrt{x - 1} & \text{if } x > 1 \end{cases}$$

$$\lim_{x \to 1} f(x) = 0$$

$$\lim_{x \to 1^+} f(x) = 2$$

Assigned Work:

p.38 # 5, 6, 7, 10def, 11bc, 12a

Feb 6-8:30 AM