4 – 2.1 The Derivative Function

Lesson Goals:

- To find the derivative at a specific point
- To find the general derivative for a given function
- Identify the domain where a function is differentiable

1) Derivative

- The derivative has two meanings
 - 1) At the point (a, f(a)) on a function, the derivate is the slope of the tangent line. This is also called the instantaneous rate of change x = a.
 - 2) For the function f(x), the derivative f'(x) is a general formula for all the slopes of tangent lines to the function.

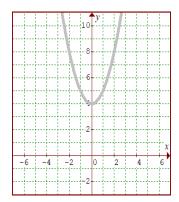
It can calculate the rate of change at any point.

Function	First Derivative	Second Derivative	Third Derivative
$f(x) = x^4$	$f'(x) = 4x^3$	$f^{\prime\prime}(x) = 12x^2$	$f^{\prime\prime\prime}(x) = 24x$
$y = x^4$	$y' = 4x^3$	$y^{\prime\prime} = 12x^2$	$y^{\prime\prime\prime} = 24x$
$y = x^4$	$\frac{dy}{dx} = 4x^3$	$\frac{d^2y}{dx^2} = 12x^2$	$\frac{d^3y}{dx^3} = 24x$

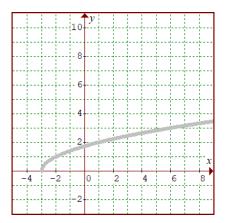
2) First Principles Definition of Derivative

Formula 1	Formula 2	
• The derivative at a specific value $x = a$.	• General derivative formula at <i>x</i> .	
• Two points are $(a, f(a))$ and $(x, f(x))$.	• Two points are $(x, f(x))$ and $(x + h, f(x + h))$.	
$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}, x \neq a$	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}, h \neq 0$	

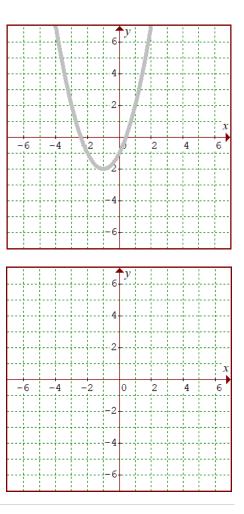
Example 1: Given $f(x) = x^2 + 4$, determine the derivative at x = -1 using the First Principles definition.



Example 2: Given $g(x) = \sqrt{x+3}$, determine the equation of
the tangent line at $x = 6$.

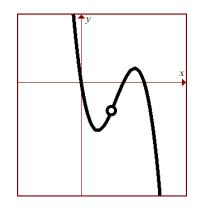


Example 3: Given $f(x) = x^2 + 2x - 1$. Find the derivative f'(x) from First Principles.

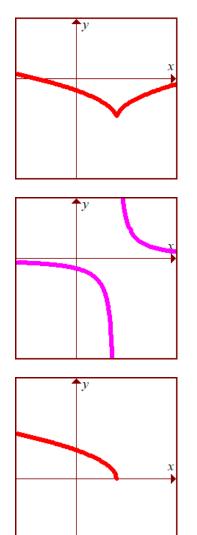


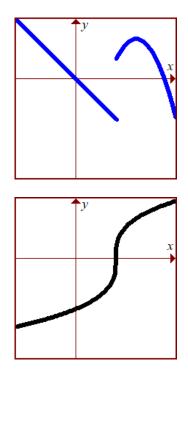
3) Differentiable

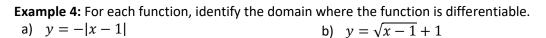
- •
- •
- A function is differentiable at x = a if f'(a) exists. That is, if $\lim_{x \to a^{-}} \frac{f(x) f(a)}{x a} = \lim_{x \to a^{+}} \frac{f(x) f(a)}{x a}$ A function is differentiable at x = a or the derivative can be calculated at: •

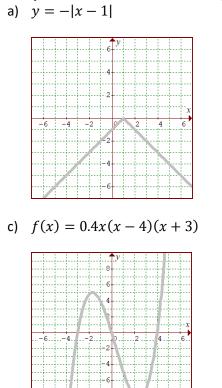


A function is not differentiable where there is a •



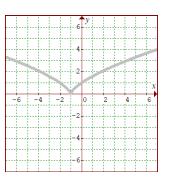






-6 -4 -2 0 2 4 6

d)
$$g(x) = (x+1)^{2/3}$$



Example 5: Given $y = \frac{x}{x+2}$. Find the derivative $\frac{dy}{dx}$ from First Principles.