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3.2  Maximum and Minimum on an Interval          

 (Extreme Values) 
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y = f (x) 
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y = x2 + 2x – 3 

The lowest point on the 

graph is (– 1, – 4). 

f (x) > f (–1) for all 

values of x. 

The point (– 1, – 4) 

corresponds to the  local 

and absolute minimum 

point of the function. 

Since f (x)  as x –  and f (x) as x  , 

there is no maximum value. 
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Critical Numbers: 
Points on the graph where the slope of the tangent lines 

are zero.   

Points where f ´(x) = 0.   

f ´ (x) = x2 – 2x – 3  

f ´ (x) = (x + 1)(x – 3) 

f ´ (x) = 0  where x = – 1 and x = 3 

3 21
( ) 3 2

3
f x x x x   

Example: 
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Finding Absolute Extrema 

1) Determine f ´ (x). Find all critical numbers for 

     the interval a  x  b. 

2) Evaluate f  at the endpoints a and b and at  

    each critical number c. 

3) Compare the values found for step 2. 

The largest value is the absolute maximum 

The smallest value is the absolute minimum 

for the interval a x  b. 

for the interval a  x  b. 
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Example 1: 

Find all critical numbers for the function and the 

maximum and minimum values.  

f(x) = x3 + 3x2 – 24x 

  

– 5 x  3. 

Graph the function. 

f ´(x) = 3x2 + 6x – 24 

1) Find all critical numbers: 

f ´(x) = 3(x2 + 2x – 8) 

f ´(x) = 3(x – 2)(x + 4)  

f ´(x) =0, where x = 2 or 4 

sub x = 2 and x = – 4 into 

f (x) = x3 + 3x2 – 24x 

  

f(2) = (2)3 + 3(2)2 – 24(2) 

f(2) = – 28 

f(–4) = (–4)3 + 3(–4)2 – 24(–4) 

f(–4) = 80 

critical points are (2, –28) 

and (–4, 80)  
 
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Example 1: 

Find all critical numbers for the function and the 

maximum and minimum values.  

f(x) = x3 + 3x2 – 24x 

  

– 5 x  3. 

Graph the function. 

2) Find the endpoints: 

f(3) = (3)3 + 3(3)2 – 24(3) 

f(3) = –18 

f(–5) = (–5)3 + 3(–5)2 – 24(–5) 

f(–5) = 70 

The  endpoints are (–5, 70) and (3, –18) 

 
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critical points are (–4, 80) and (2, –28)  

The  endpoints are (–5, 70) and (3, –18) 
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Example 2: Determine the local and absolute extrema 

for the function:  y = 2x3 – 3x2 – 12x + 1, – 6 x  2 

y = 2x3 – 3x2 – 12x + 1 

y´ = 6x2 – 6x – 12 

y´ = 6(x2 – x – 2) 

y´ = 6(x – 2)(x + 1) 

There are critical points at x = 2 and x = – 1 

Sub at x = 2 and x = – 1 into the original equation. 

y = 2(2)3 – 3(2)2 – 12(2) + 1 

y = –19 

(2, –19) and (–1, 8) 
y = 2(–1)3 – 3(–1)2 – 12(–1) + 1 

y = 8 


