## 3.3 – Concavity and the Second Derivative Test

**Goal:** To perform a second derivative test to determine points of inflection and whether functions are concave up or concave down.

We've seen that a function has a *critical point* at (a, f(a)) when \_\_\_\_\_\_.

Right now, to classify critical points, we need to check the behaviour of the original function around the critical point. Instead, we can use a **second derivative test** to easily classify critical points.

A function f(x) is said to be **concave** up if:

A function f(x) is said to be **concave** *down* if:

If f''(a) = 0,

| The Second Derivative Test                     |  |  |  |  |
|------------------------------------------------|--|--|--|--|
| If $f'(a) = 0$ and $f''(a) > 0$                |  |  |  |  |
| • $f(x)$ is <b>concave</b> <i>up</i>           |  |  |  |  |
| • $(a, f(a))$ is a <b>local</b> <i>minimum</i> |  |  |  |  |
| If $f'(a) = 0$ and $f''(a) < 0$                |  |  |  |  |
| • $f(x)$ is <b>concave</b> down                |  |  |  |  |
| • $(a, f(a))$ is a <b>local</b> maximum        |  |  |  |  |
| If $f''(x)$ changes sign at $a$ ,              |  |  |  |  |
| • $(a, f(a))$ is an <i>inflection point</i>    |  |  |  |  |
| If $f'(a) = 0$ as well, then                   |  |  |  |  |
| • $(a, f(a))$ is called a <b>saddle point</b>  |  |  |  |  |

**Example 1**. (p.174 #7c) Find the critical points of the function  $f(x) = x^4 - 6x^2 + 10$ . Then, classify them using the second derivative test.

**Example 2.** (Similar to p.174 #5) Find the inflection points and the intervals of concavity for the function  $f(x) = x^4 - 6x^2 - 5$ .

## Second Derivative Test:

| Interval |  |  |  |
|----------|--|--|--|
| T.V.     |  |  |  |
| f''(x)   |  |  |  |
| f(x)     |  |  |  |

Inflection Point(s):

f(x) is **concave** *up* (C.U.) when:

f(x) is **concave** *down* (C.U.) when:





**Example 4.** (p.174 #1b) For the graph shown to the right, identify the intervals over which the graph is concave up and the intervals over which it is concave down.



Date: \_\_\_\_\_

**Example 5.** (p.174 #2d,3d) Given the graph of f''(x), state the intervals of concavity for the function f(x). Also indicate where any inflection points occur for f(x). Then, sketch a possible graph of y = f(x).





IP - P. 173 #1-3, 5c, 6, 7