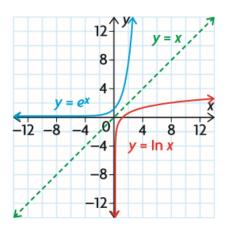

5 – 5.1 Derivatives of Exponential Functions, $y = e^x$

Lesson Goals:

• Be able to apply the differentiation rules to find the derivative of exponential functions


1) Definition of Euler's Number, e

- This is an irrational number.
- A non-terminating, non-repeating decimal value like π . $e = 2.718281828459 \dots$
- Used as the base of an exponential function, f(x) = e^x has the special property that the slope of the tangent at x = 0 is 1.

2) Properties of $y = e^x$ and the Natural Logarithm

- The inverse of $y = e^x$ is
 - $y = log_e x$ or y = lnx
- This is called the natural logarithm.
- "Inx" is pronounced "lawn x".

$y = e^x$	$y = \ln x$
• The domain is $\{x \in \mathbf{R}\}$.	• The domain is $\{x \in \mathbf{R} \mid x > 0\}$.
• The range is $\{y \in \mathbf{R} y > 0\}$.	• The range is $\{y \in \mathbf{R}\}$.
• The function passes through (0, 1).	• The function passes through (1, 0).
• $e^{\ln x} = x, x > 0.$	• $\ln e^x = x, x \in \mathbf{R}$.
 The line y = 0 is the horizontal asymptote. 	• The line $x = 0$ is the vertical asymptote.

- 3) Derivative of $f(x) = e^x$
 - If $f(x) = e^x$, then f'(x) =
 - If $f(x) = e^{g(x)}$, then f'(x) =

Example 1: Determine the derivative of $y = e^{-2x}$.

Example 2: Determine the derivative for each function. Express your answers in factored form. a) $f(x) = x^2 e^{3x}$ $(x^2 + 5x)$ b

b)
$$g(x) = \frac{e^{(x^2+3x)}}{\sqrt{x}}$$

Example 3: Determine the equation of the tangent line to the curve $y = e^{4-3x}$ at the point where x = 2.

Homework: Page 232 #1-13