6.1 Introduction to Vectors

Scalar	VS.	Vector
a quantity that has only magnitude		a quantity that has both magnitude AND direction
mass		velocity
area		friction
speed		weight
age		torque
temperature		

Characteristics of Vectors:

<u>1. A vector can be represented by a directed line segment:</u>

"A" is the tail of the vector. (starting point) "B" is the head of the vector. (ending point) It is called AB, or "vector AB"._____ The magnitiude is denoted by IABI.

Vectors are also named using lower case letters. (u,v,w are common) In this case $\overrightarrow{v} = \overrightarrow{AB}$

Eg. IF \overrightarrow{v} represented the velocity of an airplane, the direction of the arrow would represent the direction of the plane and the length would represent its speed.

2. Equal Vectors

Two vectors are equal if they are parallel to each other and have the same direction AND if the magnitudes are equal.

3. Opposite Vectors

Two vectors are opposite if they have the same magnitude but point in opposite directions.

6.2 Vector Addition

<u>Ex. 1</u> Given vectors, \vec{u} and \vec{v} such that the angle between them is 52°, $|\vec{u}| = 6$ and $|\vec{v}| = 9$, determine $|\vec{u} + \vec{v}|$. Include a diagram.

<u>Ex. 2</u> Given vectors, \vec{w} and \vec{x} such that the angle between them is 39°, $|\vec{w}| = 10$ and $|\vec{x}| = 14$, determine $|\vec{w} + \vec{x}|$. Include a diagram.

The Zero Vector When two opposite vectors are added, the resultant is the zero vector. The zero vector has a magnitude of 0, ie $|\vec{0}| = 0$ and no defined direction.

Ex4 Express each of the following in terms of \vec{x} , \vec{y} and \vec{z} , where $\vec{x} = \vec{AB}$, $\vec{y} = \vec{AC}$ and $\vec{z} = \vec{AD}$.

a)	BH = J	b)	
c)	$\overrightarrow{DB} = -\overrightarrow{Z} + \overrightarrow{N}$	d)	$\overrightarrow{HA} = -\overrightarrow{y} - \overrightarrow{N}$
e)	$\overrightarrow{BE} = \overrightarrow{Y} - \overrightarrow{N}$	12	

Ex5 A plane is travelling due West at 450 km/h. The velocity of the plane is affected by the direction and speed of the wind. Determine the resultant ground velocity for each case. N

The wind is from the south at 65 km/h. b)

