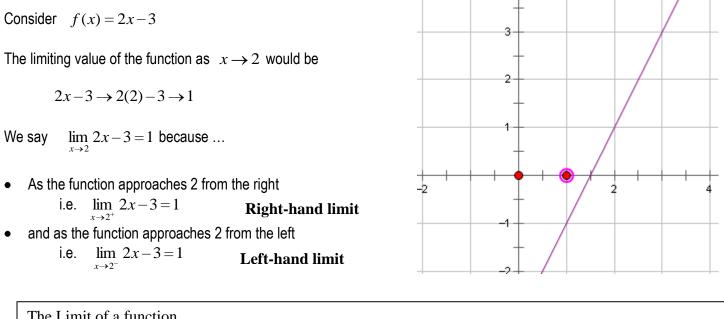
Unit I: Intro to Calculus Lesson 2: The Limiting of a Function

L.G. : I can determine the limit of a function using appropriate techniques.

Definition of a Limit

What happens to the value of a function f, as x gets closer and closer to a particular value of a? Does f(x) tend to "home in" on some specific value, that is, does it have a **limit**?



$$\lim_{x \to a} f(x) = L$$

means that $f(x)$ approaches the value L, as x approaches the value a
If $\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x)$ then $\lim_{x \to a} f(x)$ does not exist. If $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L$ then $\lim_{x \to a} f(x) = L$

Limits of Polynomial Functions

For <u>polynomial functions</u> such as, linear, quadratic, and cubic functions, the functions have a value for every value of *x*. These functions are <u>continuous</u> for all $x, x \in R$ and hence have a limiting value for all *x*.

To determine the limit of these functions at a specific value, we simply substitute the value of *x* into the function.

If f(x) is a polynomial function and $a \in R$ then, $\lim_{x \to a} f(x) = f(a)$

Example 1: Determine the following limits.

a) $\lim_{x \to 0} 3$

b) $\lim_{x \to 3} 5x^3$

c) $\lim_{x \to -1} 3x^3 - 2x^2 + x - 11$

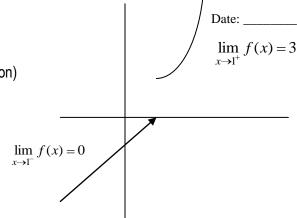
Date: _

Unit I: Intro to Calculus **Note:** Not all limits can be evaluated by substitution.

Example 2: Consider this piecewise function (step function)

$$f(x) = \begin{cases} (x-1)^2 + 3, \ x > 1\\ x-1, \qquad x \le 1 \end{cases}$$

we have $\lim_{x \to 1^+} f(x) = 3$ and $\lim_{x \to 1^-} f(x) = 0$



 $\therefore \lim_{x \to 1^+} f(x) \neq \lim_{x \to 1^-} f(x) \text{ so the limit does not exist and the function is not continuous at } x=1$

Limits of Rational Functions

L.G. : I can determine the limit of a rational function using appropriate techniques.

Definition

Let $h(x) = \frac{f(x)}{g(x)}$ be a rational function. Let a be any real number that is in the domain of h. Then the

$$\lim_{x \to a} h(x) = \frac{f(a)}{g(a)} \text{ provided } g(a) \neq 0$$

Example 1: Determine the following limits.

a)
$$\lim_{x \to 0} \frac{x^2 + 3x + 6}{x + 2}$$
 b) $\lim_{x \to 1} \frac{x^2 - 3x}{x - 2}$

IMPORTANT NOTE: Not all limits can be evaluated by substitution.

Consider $\lim_{x \to 1} \frac{1}{x-1}$, substitution results in $\frac{1}{0}$ which is undefined.

The notion of **infinity** \bigcirc refers to cases where a quantity increases without bound or limits. The symbol ∞ does not represent a real number. It describes unbounded behavior and the limit does not exist

We consider the **right-hand limit** $\lim_{x\to 1^+} f(x)$, and the **left-hand limit** $\lim_{x\to 1^-} f(x)$

X	0.9	0.99	0.999	0.9999	1.0001	1.001	1.01	1.1
$\frac{1}{x-1}$								

Homework: p37 #3, 4ace, 5, 6. 7b, 8,10df, 11ac, 12a,13 or 14 p193 #4 (End Behaviour Limits)

Unit I: Intro to Calculus

Date:

We notice that
$$\lim_{x \to 1^-} \frac{1}{x-1} =$$
 and $\lim_{x \to 1^+} \frac{1}{x-1} =$

The $\lim_{x\to 1} \frac{1}{x-1}$ does not exist but the left and right hand limits give us an understanding of the behaviour of the function at the **vertical asymptote** x = 1.

The Undefined Form
$$\left[\frac{k}{0}, k \in \Re\right]$$

Substituting x=a to find the $\lim_{x \to a} h(x) = \frac{f(a)}{g(a)}$ may result in the indeterminate form $\left[\frac{k}{0}\right]$. In this case, the limit does not exist and there is a vertical asymptote at x =a.
The Indeterminate Form $\left[\frac{0}{0}\right]$
Substituting x=a to find the $\lim_{x \to a} h(x) = \frac{f(a)}{g(a)}$ may result in the indeterminate form $\left[\frac{0}{0}\right]$. To find the limit in this case, first factor the rational function.

Example 3: Determine the following limits.

a)
$$\lim_{x \to 0} \frac{x + 3x^2}{4x}$$
 b) $\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^3 - 4x}$ c) $\lim_{x \to 2} \frac{1 - x^2}{1 - x}$ d) $\lim_{x \to 0} \frac{2 - \sqrt{4 + x}}{x}$

End Behaviour Limits

When you are finding a limit at infinity \bullet , substituting can yield another indeterminate form $\frac{\infty}{\infty}$. To find the limit in this case, divide the functions in the numerator and denominator by the highest power of x in the denominator.

Example 4: Determine the following limits.

a)
$$\lim_{x \to \infty} \frac{1}{x}$$
 b) $\lim_{x \to \infty} \frac{x^2 - 4x + 1}{x - 4}$ c) $\lim_{x \to \infty} \frac{5x^2 - 3x + 4}{2x^2 + x - 7}$

Homework: p37 #3, 4ace, 5, 6. 7b, 8,10df, 11ac, 12a,13 or 14 p193 #4 (End Behaviour Limits)

Unit I: Intro to Calculus

Date: _____

Homework: p37 #3, 4ace, 5, 6. 7b, 8,10df, 11ac, 12a,13 or 14 p193 #4 (End Behaviour Limits)