Formulas

Reciprocal Identities	Quotient Identities	Addition and Subtraction Formulas
$\csc x = \frac{1}{\sin x}$ $\sec x = \frac{1}{\cos x}$	$\tan x = \frac{\sin x}{\cos x}$ $\cot x = \frac{\cos x}{\sin x}$	sin (x + y) = sin x cos y + cos x sin y sin (x - y) = sin x cos y - cos x sin y cos (x + y) = cos x cos y - sin x sin y cos (x - y) = cos x cos y + sin x sin y
$\cot x = \frac{1}{\tan x}$	Pythagorean Identities $sin^2 x + cos^2 x = 1$ $1 + tan^2 x = sec^2 x$ $1 + cot^2 x = csc^2 x$	$\tan (x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$ $\tan (x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$
	Double Angle Formulas $sin 2x = 2 sin x cos x$ $cos 2x = cos^{2} x - sin^{2} x$ $= 2 cos^{2} x - 1$ $= 1 - 2 sin^{2} x$ $tan 2x = \frac{2 tan x}{1 - tan^{2} x}$	

NO CALCULATOR!!!!

Self-Assessment:

Total mark: _____/36

1. (4 marks) Express each of the following as a single trigonometric ratio first, then, evaluate.

a)
$$1 - 2sin^2 \frac{7\pi}{12}$$
 b) $\frac{2tan157.5^{\circ}}{1 - tan^2 157.5^{\circ}}$

2. (2 marks) Write two equivalent expressions for $\sec \frac{9\pi}{10}$, one use related acute angle, another use co-function identities.

 $\sec \frac{9\pi}{10} = _$

3. (4 marks) Solve the equation. $2sin^2x - 7sinx + 3 = 0$, $0 \le x \le 2\pi$.

4. (4 marks) Determine the exact value of $\cos \frac{5\pi}{12}$. Fully simplify, evaluate, and rationalize if necessary.

5. (4 marks) Expand and simplify first, then determine the exact value of $(sin \frac{7\pi}{12} + cos \frac{7\pi}{12})^2$.

6. (4 marks) Determine $sinx[2\cos(2x)] + sinx = 0$, on the interval $0 \le x \le 2\pi$.

7. (4 marks) Determine the exact value of $sin\frac{\theta}{2}$, given that θ is in quadrant 4 and $tan\theta = -\frac{12}{5}$.

8. (4 marks) If tanx = -1 and $cosy = \frac{4}{5}$ with x and y in the interval $\left[\frac{3\pi}{2}, 2\pi\right]$, determine the exact value of csc(x - y). Fully simplify and rationalize, if necessary.

9. (6 marks) Prove identities. a) $sec2x = \frac{cscx}{cscx-2sinx}$

b) $\frac{\sin 2x}{1-\cos 2x} = \cot x$