

Absolute vs Comparative Advantage (Simple Number Example)

Step 1: Time to do tasks

Person	Task A (hours)	Task B (hours)
Alex	4	6
Bailey	6	12

Absolute Advantage:

- Alex is faster at **both tasks** ($4 < 6$, $6 < 12$)

Step 2: Opportunity Cost (Comparative Advantage)

Opportunity cost = “What do I give up to do 1 unit of a task?”

Alex:

- Task A takes 4 hours
- In 4 hours, Alex **could have done $4 \div 6 = 0.67$ of Task B**
- Task B takes 6 hours
- In 6 hours, Alex **could have done $6 \div 4 = 1.5$ of Task A**

Bailey:

- Task A takes 6 hours
- In 6 hours, Bailey **could have done $6 \div 12 = 0.5$ of Task B**
- Task B takes 12 hours

- In 12 hours, Bailey **could have done $12 \div 6 = 2$ of Task A**

Step 3: Who should do what?

- **Task A:** Alex's opportunity cost = 0.67 of Task B
- **Task A:** Bailey's opportunity cost = 0.5 of Task B (Bailey gives up less) → Bailey should do Task A
- **Task B:** Alex's opportunity cost = 1.5 of Task A
- **Task B:** Bailey's opportunity cost = 2 of Task A (Alex gives up less) → Alex should do Task B

One-line memory trick

- **Absolute advantage:** Who is faster
- **Comparative advantage:** Who gives up less