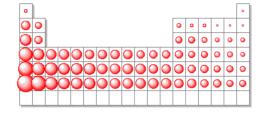


Lesson 3: The Periodic Trend (1.7)

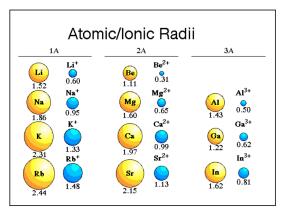
Atomic Radius (AR)

How is atomic radius measure?

The definition of atomic radius: is the distance from the centre of an atom to the boundary within which the electrons spend 90percent of their time.


Generally, as you go down a group in the periodic table, atomic radius _____ because...

Generally, as you go across a period in the periodic table atomic radius _____ because...


1 H Hydrogen Nonmetal	Chemical Group Block										2 He Helium Noble Gas						
3 Li Lithium Alkali Metal	4 Be Beryllium Alkaline E	Be Hydrogen Symbol B C N O F O O O O O O O O O O O O O O O O O									F	10 Ne Neon Noble Gas					
	12 Mg Magnesium Alkaline E											18 Ar Argon Noble Gas					
19 K Potassium Alkali Metal	20 Ca Calcium Alkaline E	21 Sc Scandium Transition	22 Ti Titanium Transition	23 V Vanadium Transition	24 Cr Chromium Transition		26 Fe Iron Transition	27 Co Cobalt Transition	28 Ni Nickel Transition	29 Cu Copper Transition	30 Zn Zinc Transition		32 Ge Germanium Metalloid	AS Arsenic Metalloid	34 Se Selenium Nonmetal	35 Br Bromine Halogen	36 Kr Krypton Noble Gas
37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline E	39 Y Yttrium Transition	40 Zr Zirconium Transition		42 Mo Molybden Transition			45 Rh Rhodium Transition	46 Pd Palladium Transition	47 Ag Silver Transition	48 Cd Cadmium Transition	49 In Indium Post-Tran	50 Sn Tin Post-Tran	51 Sb Antimony Metalloid	Te Tellurium Metalloid	53 lodine Halogen	Xe Xe Xenon Noble Gas
55 Cs Cesium Alkali Metal	56 Ba Barium Alkaline E	*	72 Hf Hafnium Transition	73 Ta Tantalum Transition	74 W Tungsten Transition	75 Re Rhenium Transition	76 Os Osmium Transition	77 r ridium Transition	78 Pt Platinum Transition	79 Au Gold Transition	80 Hg Mercury Transition	81 TI Thallium Post-Tran	82 Pb Lead Post-Tran	83 Bi Bismuth Post-Tran	Po Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Fr Francium Alkali Metal	88 Ra Radium Alkaline E	**	104 Rf Rutherfor Transition	105 Db Dubnium Transition	106 Sg Seaborgi Transition	107 Bh Bohrium Transition					112 Cn Copernici Transition	113 Nh Nihonium Post-Tran			116 LV Livermori Post-Tran	TS Tennessine Halogen	Og Oganesson Noble Gas

Practice Problems

- 7. Using only their location in the periodic table, rank the atoms in each set by decreasing atomic size. Explain your answers.
 - (a) Mg, Be, Ba
- (f) Se, Br, Cl
- (b) Ca, Se, Ga
- (g) Mg, Ca, Li
- (c) Br, Rb, Kr
- (h) Sr, Te, Se
- (d) Se, Br, Ca
- (i) In, Br, I
- (e) Ba, Sr, Cs
- (j) S, Se, O

Ionic radii for metal cations and non-metal anions

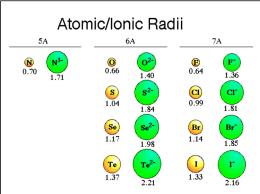


Figure 2: Periodic trend of ionic radii for metal cations and non-metal anions

Ionization Energy (IA)

Define ionization energy:	
Generally, as you go down a group in the periodic table, ionization energy	because
Generally, as you go across a period in the periodic table, ionization energy	because

How many ionization energies can an atom have?

First ionization energy: $A(g) + energy \rightarrow A^+(g) + e^-$

Second ionization energy: $A^+(g)$ + energy $\rightarrow A^{2+}(g)$ + e^-

Practice Problems

- **8**. Using only a periodic table, rank the elements in each set by increasing ionization energy. Explain your answers.
 - (a) Xe, He, Ar
- (d) Kr, Br, K
- (b) Sn, In, Sb
- (e) K, Ca, Rb
- (c) Sr, Ca, Ba
- (f) Kr, Br, Rb
- **9**. Using only a periodic table, identify the atom in each of the following pairs with the *lower* first ionization energy.
 - (a) B, O

(d) F, N

(b) B, In

(e) Ca, K

(c) I, F

(f) B, Tl

Electron Affinity (EA)

Define Electron affinity:		·
Generally, as you go down a group of elements E.A.	_ which means it is	_to
add an electron because		
Generally, as you go across a period of elements E.A.	which means it is	_to
add an electron because		
In which corner of the periodic table is it the highest?	Explain why this	is so.
How can the type (metal/non-metal) of element tell you its	E.A. value?	

Electronegativity

H 2.1		Pauling Electronegativity Values													He		
Li 1.0	Be 1.6													Ne			
Na 0.9	Mg 1.3										Al 1.5	Si 1.9	P 2.2	S 2.6	C1 3.0	Ar	
K 0.8	Ca 1.0	Sc 1.4	Ti 1.5	V 1.6		Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.8	Ge 2.0	As 2.2	Se 2.6	Br 2.8	Kr
Rb 0.8	Sr 0.9	Y 1.2	Zr 1.3	Nb 1.6	Мо 2.2	T c 1.9	Ru 2.2	Rh 2.3	Pd 2.2	Ag 1.9	Cd 1.7	In 1.8	Sn 2.0	Sb 2.1	Te 2.1	I 2.5	Хe

Higher the value, higher the electronegativity, stronger the ability to pull the electrons toward itself when form a covalent bond.

Section Wrap-up

Despite some irregularities and exceptions, the following periodic trends summarize the relationships among atomic size, ionization energy, and electron affinity:

- Trends for atomic size are the reverse of trends for ionization energy and electron affinity. Larger atoms tend to have lower ionization energies and lower electron affinities.
- Group 16 (VIA) and 17 (VIIA) elements attract electrons strongly. They
 do not give up electrons readily. In other words, they have a strong
 tendency to form negative ions. Thus, they have high ionization
 energies and high electron affinities.
- Group 1 (IA) and 2 (IIA) elements give up electrons readily. They have low or no attraction for electrons. In other words, they have a strong tendency to form positive ions. Thus, they have low ionization energies and low electron affinities.
- Group 18 (VIIIA) elements do not attract electrons and do not give up electrons. In other words, they do not naturally form ions. (They are very stable.) Thus, they have very high ionization energies and very low electron affinities.

	,							
1 (IA)								18 (VIII <i>A</i>
Н	2]	13	14	15	16	17	He
-72.8	(IIA)		(IIIA)	(IVA)	(VA)	(VIA)	(VIIA)	(+21)
Li	Ве		В	С	N	0	F	Ne
- 59.6	(+241)		- 26.7	- 122	0	- 141	-328	(+29)
Na - 52.9	Mg (+230)		AI – 42.5	Si - 134	P – 72.0	S – 200	CI -349	Ar (+34)
- 52.5	(+230)		- 42.5	- 134	- 72.0	-200	- 343	(134)
K	Ca		Ga	Ge	As	Se	Br	Kr
- 48.4	(+156)		- 28.9	- 119	- 78.2	- 195	-325	(+39)
Rb	Sr		In	Sn	Sb	Те	1	Xe
- 46.9	(+167)		- 28.9	- 107	- 103	- 190	- 295	(+40)
Cs	Ba		TI	Pb	Bi	Po	At	Rn
- 45.5	(+52)		-19.3	-35.1	-91.3	- 183	-270	(+41)

Figure 2.18 The units for electron affinity are the same as the units for ionization energy: kJ/mol. High negative numbers mean a high electron affinity. Low negative numbers and any positive numbers mean a low electron affinity.

Practice:

- 1 K/D How does your understanding of electron arrangement and forces in atoms help you explain the following periodic trends?
 - (a) atomic radius
- (c) electron affinity
- (b) ionization energy
- 2 WD Using only their location in a periodic table, rank each of the following sets of elements in order of increasing atomic size. Explain your answer in each case.

(a) Mg, S, Cl

(d) Rb, Xe, Te

(b) Al, B, In

(e) P, Na, F

(c) Ne, Ar, Xe

(f) O, S, N

3 WU Using only their location in a periodic table, rank each of the following sets of elements in order of decreasing ionization energy. Explain your answer in each case.

(a) Cl, Br, I

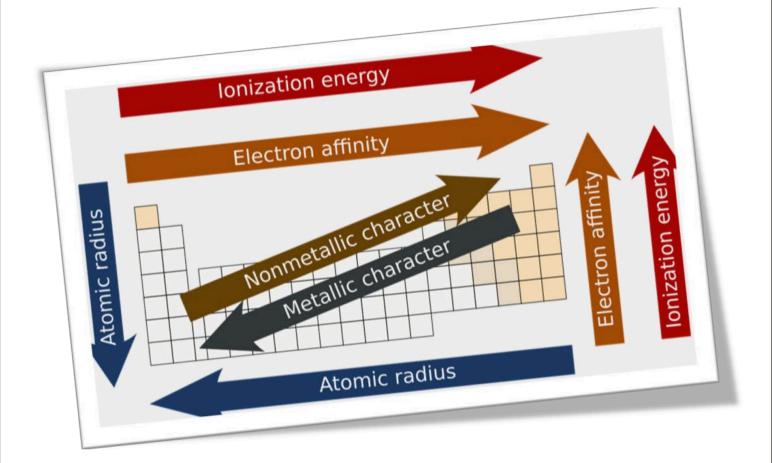
(d) Na, Li, Cs

(b) Ga, Ge, Se

(e) S, Cl, Br

(c) K, Ca, Kr

(f) Cl. Ar. K


- 4 Which element in each of the following pairs will have the lower electron affinity? Explain your answer in each case.
 - (a) K or Ca

(c) S or Se

(b) O or Li

(d) Cs or F

Overall periodic trend.

