Lesson 6 (2.4): Writing names and formulas for ionic and molecular compounds

Two types of compounds:

lonic compound – occurs when a metal loses all its valence electrons to a non-metal. The metal becomes a cation, while the non-metal becomes an anion.

Covalent compound – two non-metals share electrons. Neither loses or gains electrons – they share electrons. Neither atom becomes an ion.

Part I: How to name ionic compounds?

Rules for naming Binary ionic compound:

- 1. The name of the metal ion is first, followed by the name of the non-metal ion.
- 2. The name of the metal ion is the same as the name of the metal atom.
- 3. If the metal is a transition metal, it might have more than one possible charge. In these cases, a roman numeral is written in brackets after the name of the metal to indicate the magnitude of the charge.
- 4. The name of the non-metal ion has the same root as the name of the atom, but the suffix is changed to -ide.

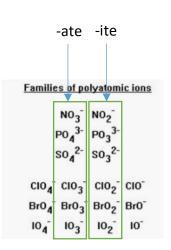
(common ionic charges in compou	inds)	² He
3 Li $_{1+}$ Be $_{2+}$ Metals	${}^{5} B_{n/a} {}^{6} C_{n/a} {}^{7} N_{3-} {}^{8} O_{2-} {}^{9} F_{1.}$	Ne Ne n/a
Na_{1+} Mg_{2+} Transition Metals	$\begin{bmatrix} 13 & & & & & & & & & & & & & & & & & & $	Ar
		Kr
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Xe
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{bmatrix} 81 \\ T1 \\ 3+,1+ \end{bmatrix} \begin{bmatrix} 82 \\ Pb \\ 4+,2+ \end{bmatrix} \begin{bmatrix} 83 \\ Bi \\ 5+,3+ \end{bmatrix} \begin{bmatrix} 84 \\ Po \\ 4+,2+,2- \end{bmatrix} \begin{bmatrix} 85 \\ At \\ 1+,1- \end{bmatrix}$	Rn n/a
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	113 114 115 116 117	118

Example of transition metals: Mn^{4+} Manganese (IV) Fe^{2+} Iron (II) Cu^{1+} Copper (I)

 Mn^{6+} Manganese (VI) Fe^{3+} Iron (III) Cu^{2+} Copper (II)

Example: Name the following compounds.

Fe_2O_2	Cu_3P_2	
$ZnCl_2$	PbS_2	
AgCl	$Mn O_2$	


How about ionic compounds with polyatomic ions?

Valence = −1			
lon	Name	lon	Name
CN-	cyanide	H ₂ PO ₃ ⁻	dihydrogen phosphite
CH ₃ COO-	acetate	H ₂ PO ₄ -	dihydrogen phosphate
ClO-	hypochlorite	MnO ₄ -	permanganate
ClO ₂ -	chlorite	NO ₂ -	nitrite
ClO ₃ -	chlorate	NO ₃ -	nitrate
ClO ₄ -	perchlorate	OCN-	cyanate
HCO ₃ -	hydrogen carbonate	HS-	hydrogen sulfide
HSO ₃ ⁻	hydrogen sulfite	OH-	hydroxide
HSO ₄ -	hydrogen sulfate	SCN-	thiocyanate

	Valence = -2			
lon	Name	lon	Name	
CO ₃ ²⁻	carbonate	O_2^{2-}	peroxide	
C ₂ O ₄ ²⁻	oxalate	SiO ₃ ²⁻	silicate	
$\mathrm{CrO_4}^{2-}$	chromate	SO ₃ ²⁻	sulfite	
$\operatorname{Cr_2O_7}^{2-}$	dichromate	SO ₄ ²⁻	sulfate	
HPO ₃ ²⁻	hydrogen phosphite	S ₂ O ₃ ²⁻	thiosulfate	
HPO ₄ ²⁻	hydrogen phosphate			

Valence = -3			
lon	Name	lon	Name
$\mathrm{AsO_3}^{3-}$	arsenite	PO ₃ ³⁻	phosphite
AsO ₄ ³⁻	arsenate	PO ₄ ³⁻	phosphate

	Prefix and suffix	Number of oxygen atoms
hypo	ite	x – 2 oxygen atoms
	ite	x – 1 oxygen atoms
	ate	x oxygen atoms
per	ate	x + 1 oxygen atoms

Example: Name the following Ionic compounds write chemical formula by using cross over rule.

Cation	Anion	Compound	Name
Ca ²⁺	NO ₃		
Mg^{2+}	PO ₄ ³⁻		
Ba ²⁺	SO ₄ ²⁻		

Part II: How to name covalent compounds?

Rules for naming Binary ionic compound:

- 1. Name the element with the lower group number first. Name the element with the higher group number second.
- 2. The one exception to the first rule occurs when oxygen is combined with a halogen. In this situation, the halogen is named first.
- 3. If both elements are in the same group, name the element with the higher period number first.
- 4. The name of the first element is unchanged.
- 5. To name the second element, use the root name of the element and add the suffix -ide.
- 6. If there are two or more atoms of the first element, add a prefix to indicate the number of atoms.
- 7. Always add a prefix to the name of the second element to indicate the number of atoms of this element in the compound.

(if the second element is oxygen, an "o" or "a" at the end of the prefix is usually omitted)

Example: Name these compounds:

Chemical formula	Name
CoF_2	
PCl_3	
Sr_3N_2	
КОН	
NH ₃	

Number	Prefix
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-

Practice:

Write	e the formulas for the following covalent comp	ounds: Write the names for the following covalent compounds:
1)	antimony tribromide	9) P ₄ S ₅
2)	hexaboron silicide	10) O ₂
3)	chlorine dioxide	11) SeF ₆
4)	hydrogen iodide	
5)	iodine pentafluoride	
6)	dinitrogen trioxide	14) CH ₄
7)	ammonia	
8)	phosphorus triiodide	
	ach of the following questions, determine whethe ent and name it appropriately.	r the compound is ionic or
1)	Na ₂ CO ₃	
2)	P ₂ O ₅	
3)	NH ₃	
4)	FeSO ₄	
5)	SiO ₂	
6)	GaCl ₃	
7)	CoBr ₂	
8)	B ₂ H ₄	
9)	co	
10)	P ₄	
		ch of the following questions, determine whether the compound is ionic or nt and write the appropriate formula for it.
	11)	dinitrogen trioxide
	12)	nitrogen
	13)	methane
	14)	lithium acetate
	15)	phosphorus trifluoride
pg. 4	16)	vanadium (V) oxide

Exceptions to Naming rules

Peroxides (highly reactive):

- Compounds that contain an oxygen-oxygen single bond
- Oxygen has charge of − 1
- "per" = an extra oxygen atom

Steps for writing peroxides:

- 1. Write formula of oxide
- 2. Add one more oxygen
- 3. Do NOT cancel subscripts

Example: Write chemical formulas of the following compounds.

- a) sodium peroxide
- b) hydrogen peroxide
- c) barium peroxide

Hydrates:

• An ionic compound that contains loosely attached water molecules as part of its ionic crystal structure

For instance, when heat is applied to $CuSO_4 \cdot 5H_2O$ (the hydrate), it will decompose to produce water vapour and the associated ionic compound (the anhydrate).

Step 1: Name the ionic compound.

Step 2: Indicate the number of water molecules using a Greek prefix in front of "hydrate"

Example:

- a) $MgSO_4 \cdot 7H_2O$
- b) sodium carbonate decahydrate
- c) lithium chlorate trihydrate
- d) Iron (III) choride hexahydrate

Part III: How to name acids?

Acid is a compound in which one or more hydrogen ions are bonded to a negative ion.

For example:

$$HF \rightarrow H^+ + F^-$$

$$H_2S \rightarrow 2H^+ + S^{2-}$$

$$HNO_3 \rightarrow H^+ + NO_3^-$$

$$H_2SO_4 \to 2H^+ + SO_4^{\ 2-}$$

The name of acid is based on the name of the negative ion that is part of the acid.

Naming acids without oxygen

Take *HCl* as an example:

Negative ion	Acid
—ide	Hydroic acid
Chlor ide	Hydro chlor ic acid

How about HBr:

Negative ion	Acid
-ide	Hydroic acid
Brom ide	Hydro brom ic acid

Negative Ions	
Fluoride	F ⁻
Chloride	Cl-
Bromide	Br ⁻
lodide	Ι-
Oxide	02-
Sulfide	S ²⁻
Nitride	N ²⁻
Phosphide	P ³⁻

Naming acids with oxygen (oxoacids)

How about *H ClO*:

Negative ion	Acid
<i>hypo</i> —ite	-ous acid
Hypochlor ite	Hypochlorous acid

How about $HClO_2$:

Negative ion	Acid
-ite	-ous acid
Chlorite	Chlorous acid

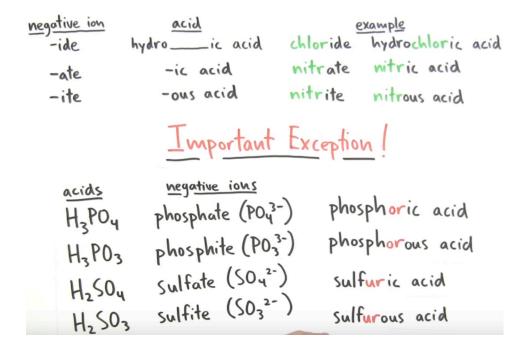
How about HNO_2 :

Negative ion	Acid
-ite	-ous acid
Nitrite	Nitrous acid

Take HNO_3 as an example:

Negative ion	Acid
-ate	—ic acid
Nitr ate	Nitr ic acid

How about H_2CO_3 :


Negative ion	Acid
-ate	—ic acid
Carbon ate	Carbon ic acid

How about $H_2 MnO_4$: (We call MnO_4 ²⁻manganate, Mn has charge of +6)

Negative ion	Acid
-ate	—ic acid
manganate	manganic acid

How about $HMnO_4$: (We call MnO_4 - permanganate, Mn has charge of +7)

Permanganate	Permanganic acid
per –ate	-ic acid
Negative ion	Acid

