Name	Per

LIMITING REACTANT AND PERCENT YIELD WORKSHEET

Steps to identifying the limiting reactant.

- I. Balance the equation.
- 2. Convert g to mol to mol of one product for all the reactants.
- 3. The limiting reactant is the reactant that produces the smallest the quantity of product.
- 4. Solve the rest of the problem, and answer the question that is posed.

Limiting Reactant Problems Write and balance each equation. Determine which reactant is the limiting reactant. Then answer the question specific to each problem.

- 1. 3.45 moles of nitrogen gas (N_2) reacts with 4.85 moles of hydrogen gas (H_2) to form ammonia (NH_3) . What is the limiting reactant? How many moles of ammonia will form?
- 2. A welder has 20.0 moles of acetylene gas (C_2H_2) and 10.0 moles of oxygen gas (O_2) . They combine to form water and carbon dioxide. Identify the limiting reactant. How many moles of carbon dioxide gas (CO_2) will form?
- 3. A student places 2.36 moles of acetic acid (CH₃CO₂H) and 3.89 moles of sodium hydroxide (NaOH) in a beaker of water. They react to form sodium acetate (NaCH₃CO₂) and water. How many moles of water will form?
- 4. 0.300 moles of bromine gas (Br₂) and 0.500 moles of chlorine gas (Cl₂) react to form tribromochlorine (Br₃Cl). How many moles of this product will form?
- 5. 100.0 grams of sodium sulfate reacts with 50.00 grams of barium nitrate to form sodium nitrate and barium sulfate. How many grams of barium sulfate will form?
- 6. I 5.5 grams of hydrogen gas reacts with 30.0 grams of oxygen gas to form water vapor. How many grams of water vapor will form?
- 7. I0.0 g of acetic acid (CH₃CO₂H) reacts with 10.0 g of lead(II) hydroxide to form water and lead (II) acetate (Pb(CH₃CO₂)₂) and water. Which reactant is in excess? How many grams of it will remain after the reaction goes to completion? How many grams of lead (II) acetate will form?
- 8. 25.3 g of magnesium reacts with 44.3 g of copper (II) nitrate to form copper and magnesium nitrate. What mass of copper will form? What mass of reactants will remain unreacted?

% Yield Problems

- 9. Determine the % yield when 7.80 grams of benzene (C_6H_6) burns in oxygen gas to form 3.00 grams of CO_2 gas and water vapor.
- 10. What is the % yield when 140.0 grams of Ethylene gas (C_2H_4) reacts with excess Chlorine gas (Cl_2) to form 280.0 grams of 1,2-Dichloro Ethane $(C_2H_4Cl_2)$ according to the equation $C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$?
- 11. A process to produce aluminum from aluminum oxide has an 85.0% yield. How much aluminum will be produced from a reacting 700.0 kg of aluminum oxide to produce Al? (assume that the reaction is $Al_2O_3 + H_2 \rightarrow Al + H_2O$)

ANSWERSTO LIMITING REACTION PROBLEMS N2 +3H2 -> 2NH3 3.45 mol N2 Zmol NH3 = 4.90mul NH3 By 4.85 mal Hz ZwelNH3 = 3.23 mel NH3 Hz is the limiting vector 3. 23 mel NH3 will form 2 2CzHz +50, -> 4COz + ZH20 20.0 mel Cette | 4 mel COz = 40.0 mol COz 10.0 mol 02 4 mol CO2 = 8.00 mal CO2 Oz is limitory. 8. coul (Ozwillfern

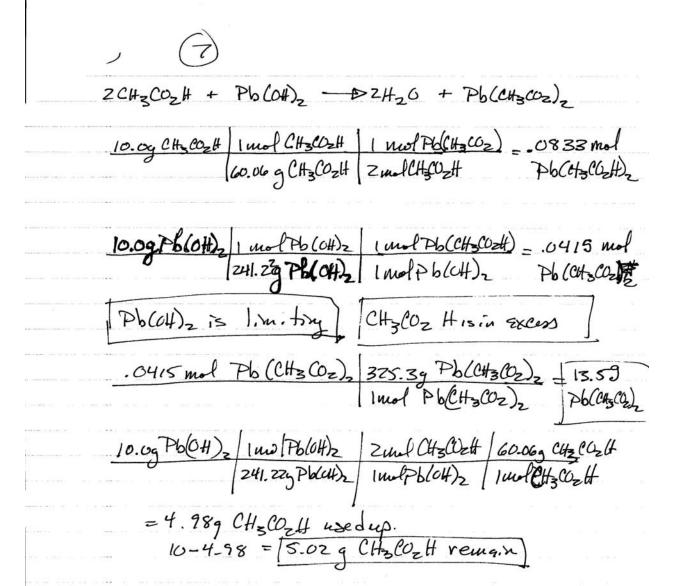
2.36

CH3COZH +NaOH - Na CH3COz + H2O

2.36 mol CHzCOzt 1 moltz0 = 2.36 mol HzO

3.89 mol NaOH 1 mol H 20 = 3.89 mol 1/20

CH3COzH is the limiting reaction. 2.36 moltro will form


(4) .30 3Br2+C/2 ->2Br3C/

300 mol Brz Zmd Brz - . 200mol Brz Cl

. 500 mol Clz / ZmolBrack = 1. ovnet Brack

Brz is the limiting reactant. - zoonal Brz Cl will form

(3) Nazsoy + Ba (NO3)z	-D Basout 2NaNO3
1009 NazSey 1 mol NazSey	
50.09 Ba (NO3) 2 1 mol Bala 229.35g Balac	
Ba (NO3) 2 is limiting	
218 mol Basoy 233.49 Basoy	= 50.9 g Ba SO4
Molar mass Calculations	
Na Zx ZZ.99 = 45.98	Ba 1x 137.33 = 137.33
S 1x 32.07=32.07	N 2x 14.01 =28.02
O 4x 16.00 = 64.00	0 6x 16.00 = 94.00
14 2.05 Just	229.35 June
Ba 14 137.33=137.33	
S 14 32.07= 32.07	
0 44 16.00=64.00	
233.4	

•
Mg + Cu (NO3)2 → Mg (NO3)2 + Cu
25.3 gMg Invol Mg Invol Ca = 1.04 mol Ca 24.31g Mg Invol Mg
441 /2 M. (M) 1. M. (M) 1 1 1 1 1 1 1 2 1 2 2 1 11 1
77.5g ca (3)2 (motta (003)2 (mot ca = .256 mo)
44.3 g Cu (NO3) 2 1 mol Cu (NO3) 2 1 mol Cu (NO3) 2 Cu
Cu (NO3)z is 1. m.try. Mg 13 in Excus
721 1 C. 12 22 1 - 14 9972 - Trans C.
736 mel Cu 63.55 g lu = 14.9978 = [15.04 lu]
.23 Levnol Cu mol My 24.31 g Mg = 5.74 g Mg used up
75.39 Un tostat
- 5. My My upedys
75.3g My tostant - 5.74 My upedys [19.6 g My Roman]
Alternate Approach