

Solution is a <u>homogeneous</u> mixture of two or more substances, has a <u>uniform</u> composition. For example:

- The coffee is an aqueous solution
- The stainless steel spoon is also a solution of metal

Parts of solution:

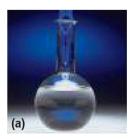
- **Solvent**: The substance in the greatest amount (normally is liquid)
- **Solute**: any other substances in the solution (could be liquid in smaller amount or solid or gas)
- **Aqueous solution**: solution that contain water.
- In a cup of coffee, solvent is water, solute is substance from the coffee bean such as caffeine.

Solubility:

- Solubility: the <u>maximum</u> amount of solute that will dissolve in a given quantity of solvent at specific temperature.
- A solute is described as:
 - "soluble" if more than 1 gram in 100 mL of solvent
 - "slightly soluble" if between 0.1 gram and 1 gram in 100 mL of solvent
 - "insoluble" if less than 0.1 gram in 100 mL of solvent
- For example: at 20 °C
 - NaCl is soluble in water, given its solubility is 35.9 g / 100mL
 - Ca(OH)₂ is slightly soluble in water 0.183 g / 100 mL
 - CaCO₃ is insoluble in water − ~0.005 g / 100 mL

Level of saturation:

- At a specific temperature, a solution is decribed as a:
 - Saturated solution if no more solute can be dissolved
 - Unsaturated solution if more of the same solute can be dissolved
 - Supersaturated solution contains more dissolved solute than a saturated solution at the same temperature.
 - This usually occurs momentary when a temperature change occurs.
 - is unstable, and a disturbance can precipitate out the excess solute



Unsaturated

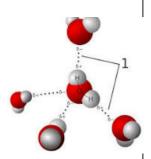
Saturated

Supersaturated

Figure 3 (a) A supersaturated sodium acetate solution is prepared by dissolving sodium acetate in water at a high temperature and then allowing the solution to cool. (b) Adding a seed crystal of sodium acetate causes the excess solute to begin to crystallize. (c)–(e) Crystallization continues until the solution is no longer supersaturated. It is now a saturated solution containing a solid.

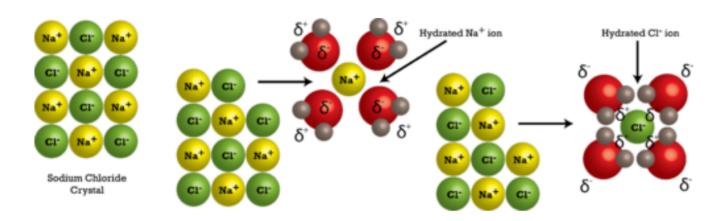
Unit 4: Solutions and solubility

Lesson 2: Factors that affect solubility and rate of dissolving

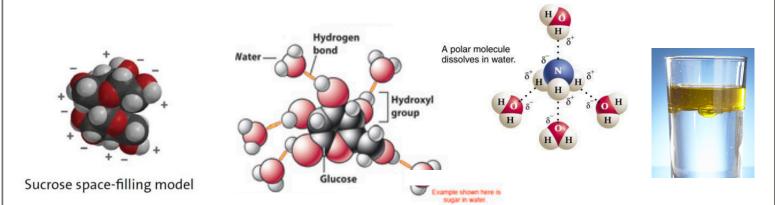

Solubility and forces between particles

Formation of most solutions depends on the relative strength of 3 categories of forces:

- 1. Forces between particles of the solute
- 2. Forces between particles of the solute to particles of the solvent
- 3. Forces between particles of the solvent

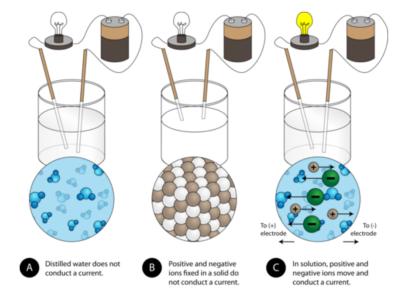

Solubility in water

- Water is a polar solvent
- water molecules bond to each other with hydrogen bonding (the bond between H and O, N, and F)


Solubility of **Ionic compounds** in water

- Most ionic compounds are soluble in water
- Water dipole can pull the compound apart due to opposite partial charge
- Partial positive part of water molecules surround the negative ions
- Partial negative part of water molecule surrounds the positive ions
- Polar water bound ionic compounds crystal will disperse uniformly in water
- Let's check out this video https://www.youtube.com/watch?v=xdedxfhcpWo

Solubility of Polar Molecular compounds in water


- Most polar compounds is able to dissolve in water
- This is because the attraction between the partial charge of water molecules and the partial charge of polar molecules.

Non-polar molecules do not dissolve in water, why?

Conductivity of aqueous solutions

- Ionic compounds will conduct an electricity when dissolved in water because ions <u>carry charges</u>
- whereas molecular compounds will not conduct electricity when dissolved in water because the molecular compounds <u>remain intact</u>.

Predicting whether an ionic compound is soluble in water

- Ion charge: the greater the charge on each ion, the less soluble the compound will be
 - For example: oxide compounds are less soluble than fluoride compounds
- Ion Size: as ion size increase solubility increases (usually)
 - For example: AgCl is insoluble, but AgNO3 is soluble because the nitrate ion is larger.

Solubility Guidelines

		Anions						
		Cl ⁻ , Br ⁻ , l ⁻	S ²⁻	OH-	SO ₄ ²⁻	CO ₃ ²⁻ , PO ₄ ³⁻ , SO ₃ ²⁻	$C_2H_3O_2^-$	NO ₃ ⁻
Cations	High solubility (aq) ≥0.1 mol/L (at SATP)	most All Group 1 compo	Group 1, NH ₄ + Group 2 ounds, including ac	Group 1, NH ₄ + Sr ²⁺ , Ba ²⁺ , Tl ⁺ cids, and all ammo	most onium compounds a	Group 1, NH ₄ + are assumed to have h	most igh solubility in wa	all ter.
	Low Solubility (s) <0.1 mol/L (at SATP)	Ag ⁺ , Pb ²⁺ , TI ⁺ , Hg ₂ ²⁺ , (Hg ⁺), Cu ⁺	most	most	Ag ⁺ , Pb ²⁺ , Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Ra ²⁺	most	Ag ⁺	none

Predicting whether a molecular compound is soluble in water

- Polar molecular compounds are soluble in water
- nom-polar molecular compounds are insoluble
- Which of the following will be the most soluble molecule?
 CH₃OH, CH₂CH₂OH, CH₂CH₂OH? Why?

Like Dissolve like

- Polar substances can often dissolve ionic and polar substances

		Solute		
		Polar or Ionic	Non-Polar	
	Polar			
Solvent	Non-Polar			

- For molecules that have both polar and non-polar components can dissolve in both polar and non-polar solvents
 - Example: Soap and detergent canwash off dirt and grease