Unit 4: Solutions and solubility

Lesson 3: Concentrations of Solutions

Concentration: the ratio of solute in a solution

concentration =

amount of solute

amount of solution (no including solute)

Dilute solution: having a low amount of solute

Concentrated solution: having a high amount of solute

Calculating Concentrations: There are 3 basic ways to express concentration

- Percent concentrations
- Very low concentrations (ppm or ppb)
- Molar concentrations

1. Percent concentrations

- mass of solute to volume of solution expressed as percentage
- % concentration can be in the following 3 ways:
 - $percent(m/v) = \frac{mass\ of\ solute\ in\ g}{volume\ of\ solution\ in\ mL} \times 100\%$
 - $percent(m/m \ or \ w/w) = \frac{mass \ of \ solute \ in \ g}{mass \ of \ solution \ in \ g} \times 100\%$
 - $percent(v/v) = \frac{volume\ of\ solute\ in\ mL}{volume\ of\ solution\ in\ mL} \times 100\%$
 - $percent(w/v) = \frac{mass \ of \ solute \ in \ g}{volume \ of \ solution \ in \ mL} \times 100\%$

Example 1: What is the %w/w of copper in an alloy when 10.0 g of copper is mixed with 250 g of zinc?

Example 2: A solution contains 6.5 g of NaCl in 250 g of water. Calculate the % by mass of NaCl.

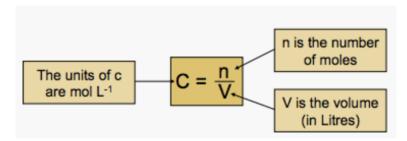
Example 3: What is approximate %v/v if 30.0 mL of pure ethanol is added to 250 mL of water?

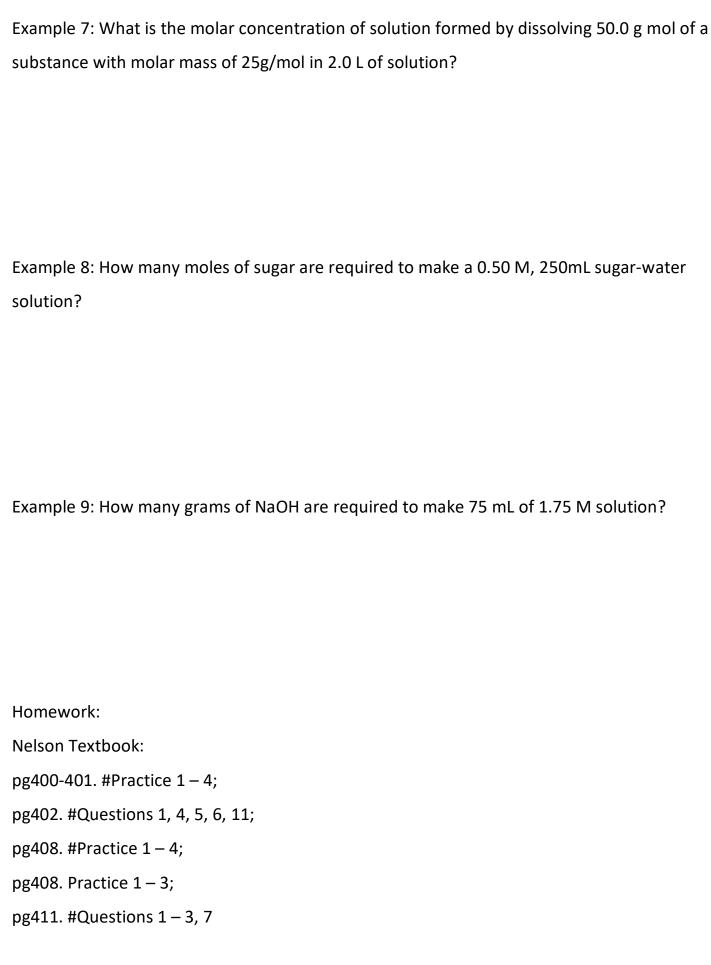
Example 4: Describe how you would make 600.0 g of a 15% by mass sugar solution. We assume the density of solution is approximately 1g/mL.

Example 5: How much pure water should be added to 15.0 mL of pure acetic acid to make a 5.0% solution of acetic acid?

2. Very low concentration

- Useful for extremely dilute solutions
- $parts \ per \ million \ (ppm) = \frac{mass \ of \ solute \ in \ gram}{mass \ of \ solution \ in \ gram} \times 10^6$
- $parts \ per \ billion \ (ppb) = \frac{mass \ of \ solute \ in \ gram}{mass \ of \ solution \ in \ gram} \times 10^9$
- $parts \ per \ trillion \ (ppt) = \frac{mass \ of \ solute \ in \ gram}{mass \ of \ solution \ in \ gram} \ x \ 10^{12}$

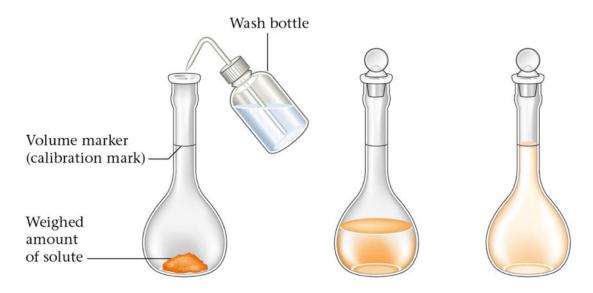

Example 6: Health Canada's guideline for the maximum Hg content in fish is 0.5 ppm. If a 1.6 kg fish is found to Contain 0.6 mg of Hg, is it safe to eat?


Table 2 Measure of Concentration

Name	Abbreviation	Equation	Application
percentage volume/volume	% V/V	$c_{\text{v/v}} = \frac{V_{\text{solute}}}{V_{\text{solution}}} \times 100 \%$	liquid-liquid mixtures
percentage weight/volume	% W/V	$c_{\text{w/v}} = \frac{m_{\text{solute}}}{v_{\text{solution}}} \times 100 \%$	solid-liquid mixtures
percentage weight/weight	% W/W	$c_{\text{w/w}} = \frac{m_{\text{solute}}}{m_{\text{solution}}} \times 100 \%$	solid-liquid or solid-solid mixtures
parts per million	ppm	$c_{\rm ppm} = \frac{m_{\rm solute}}{m_{\rm solution}} \times 10^6 \rm ppm$	to express small concentrations (e.g., composition of air)
parts per billion	ppb	$c_{ m ppb} = rac{m_{ m solute}}{m_{ m solution}} imes 10^9 m ppb$	to express very small concentrations (e.g., metal contaminants in water)
parts per trillion	ppt	$c_{ m ppt} = rac{m_{ m solute}}{m_{ m solution}} imes 10^{12} m ppt$	to express extremely small concentrations (e.g., traces of medications in water)

3. Molar concentration (Molarity)

- Mainly used in chemistry
- Measured in the number of moles of solute per litre of solvent


Unit 4: Solutions and solubility

Lesson 4: Preparing solutions in the laboratory (8.7)

Preparation of a standard solution from a SOLID: Often to get solid chemicals to react they must be dissolved in solution (usually water).

It is therefore often necessary to create a **standard solution** when performing an experiment.

(a solution for which the exact concentration is known)

Example 1: What mass of sodium hydroxide would you need to dissolve in 500 mL of water to create a 2.0M solution?

Preparation of a standard solution by Dilution: Sometimes you may already have a standard solution that is too concentrated for your desired experiment. You must therefore dilute your "stock solution" to form a new standard solution.

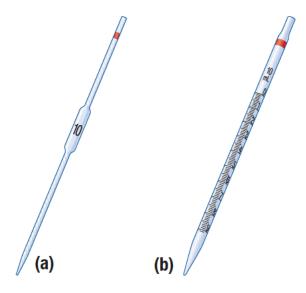
Consider a 500mL solution of salt water. If we dilute the solution by adding an additional 500 mL of water...

- Has the concentration of salt in the solution changed?
- Has the amount of salt present in the solution changed?

Dilution Formula:

Since the amount of salt does not change, the # of moles of salt is the same in both the initial and final solutions.

Hence: $c_1v_1 = c_2v_2$


Example 2: 750 mL of 2.50 M NaOH stock solution is diluted to 2.00 L. What is the concentration of the diluted solution?

Example 3: What volume of 12.0 M $HCl_{(aq)}$ is required to make a 3.0 L solution of 1.0 M $HCl_{(aq)}$?

Example 4: 500.0 mL of a 6.5 M H₂SO₄ solution is diluted down to 1.5 M. What volume of water was added?

General Safety when Diluting Concentrated Acids:

- Safety goggles and gloves should be worn at all times.
- Always add acid to water, not the other way around.
- Adding water to a concentrated acid causes
 the water to float on top of the acid which can
 start to boil and splatter out.

Figure 3 (a) A volumetric pipette can deliver only one specific volume. (b) A graduated pipette can deliver a range of volumes.

Homework: Textbook pg405. #1 – 7