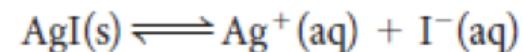


Chapter 7.6


Solubility Equilibria and the Solubility Product Constant

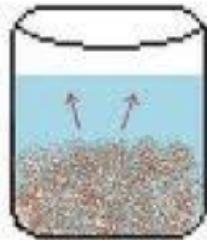
Learning Goals: I will be able to ...

1. **identify** solubility product constant, K_{sp} , and write the expression for it
2. **solve** problems related to solubility equilibrium by **performing** calculations involving concentrations of reactants and products
3. **predict** whether a precipitate will form when two solutions are mixed
4. **predict** the equilibrium shift when a common ion is added to an equilibrium system

Solubility Equilibria of Ionic Compounds

- **Solubility** is the quantity of solute that dissolves in a given quantity of solvent at a particular temperature
- A **solubility equilibrium** is a dynamic equilibrium between a solute and a solvent in a saturated solution in a closed system

Saturated Solution



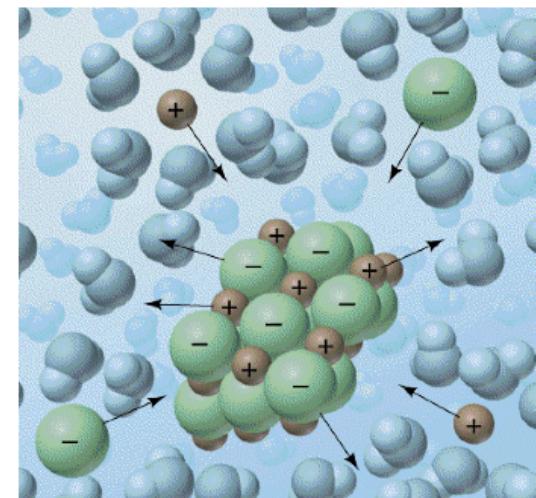

Figure 1.1

Figure 1.2

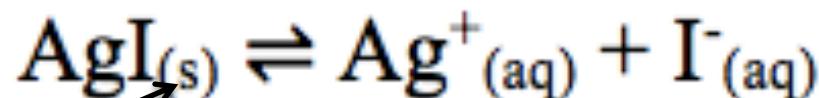


Figure 1.3

The Solubility Product Constant (K_{sp})

- The **Solubility Product Constant (K_{sp})** is the value obtained from the equilibrium law applied to a saturated solution

In any solubility equilibrium, the reactant is a solid

$$K = \frac{[\text{Ag}^+_{(aq)}][\text{I}^-_{(aq)}]}{[\text{AgI}_{(s)}]}$$

$$K_{sp} = [\text{Ag}^+_{(aq)}][\text{I}^-_{(aq)}]$$

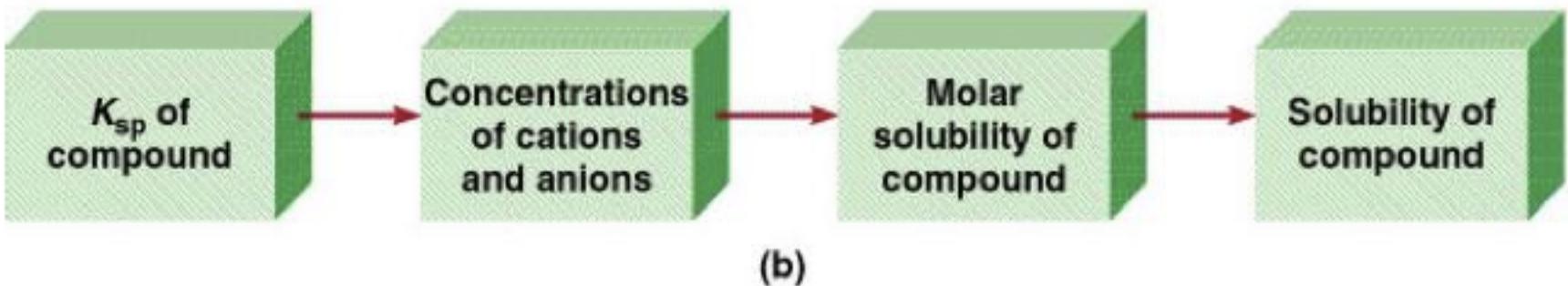
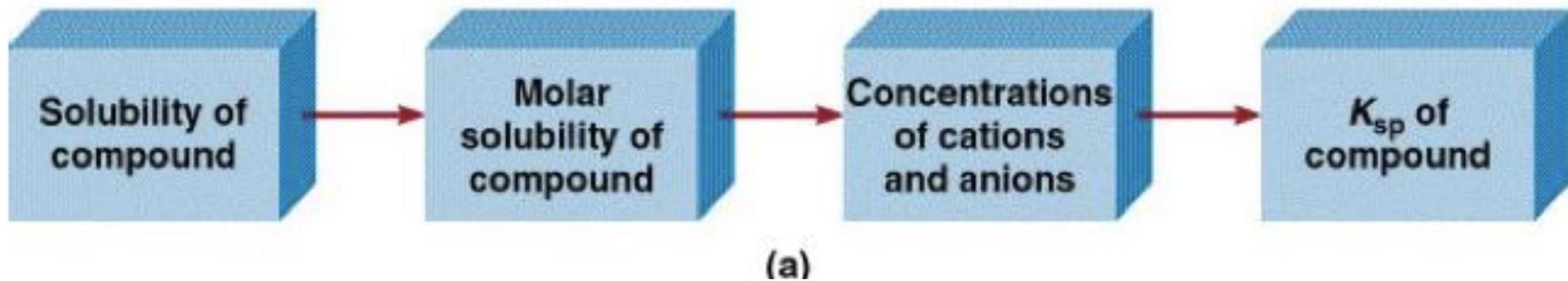
Remember: solids are not included in the equilibrium law because their concentrations do not change

The K_{sp} of $\text{AgI}_{(s)}$ is 8.3×10^{-17} at 25°C

Table 16.2 Solubility Products of Some Slightly Soluble Ionic Compounds at 25°C

Compound	K_{sp}	Compound	K_{sp}
Aluminum hydroxide $[\text{Al}(\text{OH})_3]$	1.8×10^{-33}	Lead(II) chromate (PbCrO_4)	2.0×10^{-14}
Barium carbonate (BaCO_3)	8.1×10^{-9}	Lead(II) fluoride (PbF_2)	4.1×10^{-8}
Barium fluoride (BaF_2)	1.7×10^{-6}	Lead(II) iodide (PbI_2)	1.4×10^{-8}
Barium sulfate (BaSO_4)	1.1×10^{-10}	Lead(II) sulfide (PbS)	3.4×10^{-28}
Bismuth sulfide (Bi_2S_3)	1.6×10^{-72}	Magnesium carbonate (MgCO_3)	4.0×10^{-5}
Cadmium sulfide (CdS)	8.0×10^{-28}	Magnesium hydroxide $[\text{Mg}(\text{OH})_2]$	1.2×10^{-11}
Calcium carbonate (CaCO_3)	8.7×10^{-9}	Manganese(II) sulfide (MnS)	3.0×10^{-14}
Calcium fluoride (CaF_2)	4.0×10^{-11}	Mercury(I) chloride (Hg_2Cl_2)	3.5×10^{-18}
Calcium hydroxide $[\text{Ca}(\text{OH})_2]$	8.0×10^{-6}	Mercury(II) sulfide (HgS)	4.0×10^{-54}
Calcium phosphate $[\text{Ca}_3(\text{PO}_4)_2]$	1.2×10^{-26}	Nickel(II) sulfide (NiS)	1.4×10^{-24}
Chromium(III) hydroxide $[\text{Cr}(\text{OH})_3]$	3.0×10^{-29}	Silver bromide (AgBr)	7.7×10^{-13}
Cobalt(II) sulfide (CoS)	4.0×10^{-21}	Silver carbonate (Ag_2CO_3)	8.1×10^{-12}
Copper(I) bromide (CuBr)	4.2×10^{-8}	Silver chloride (AgCl)	1.6×10^{-10}
Copper(I) iodide (CuI)	5.1×10^{-12}	Silver iodide (AgI)	8.3×10^{-17}
Copper(II) hydroxide $[\text{Cu}(\text{OH})_2]$	2.2×10^{-20}	Silver sulfate (Ag_2SO_4)	1.4×10^{-5}
Copper(II) sulfide (CuS)	6.0×10^{-37}	Silver sulfide (Ag_2S)	6.0×10^{-51}
Iron(II) hydroxide $[\text{Fe}(\text{OH})_2]$	1.6×10^{-14}	Strontium carbonate (SrCO_3)	1.6×10^{-9}
Iron(III) hydroxide $[\text{Fe}(\text{OH})_3]$	1.1×10^{-36}	Strontium sulfate (SrSO_4)	3.8×10^{-7}
Iron(II) sulfide (FeS)	6.0×10^{-19}	Tin(II) sulfide (SnS)	1.0×10^{-26}
Lead(II) carbonate (PbCO_3)	3.3×10^{-14}	Zinc hydroxide $[\text{Zn}(\text{OH})_2]$	1.8×10^{-14}
Lead(II) chloride (PbCl_2)	2.4×10^{-4}	Zinc sulfide (ZnS)	3.0×10^{-23}

K_{sp} values for a number of different solids are found in your textbook on page 725



Practice

- Write the solubility product constant equation for each of the following:

Solubility and the Solubility Product Constant

- Solubility can be expressed in two ways:
 1. **Molar solubility** is the number of moles of solute dissolved in a given volume of a saturated solution
 2. **Mass per volume Solubility** is the number of grams of solute dissolved in a given volume of a saturated solution
- It is possible to convert between either solubility and

Example 1

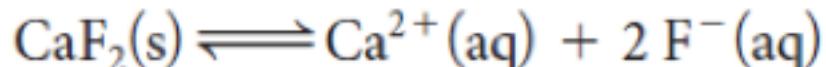
The molar solubility of $\text{Pb}_3(\text{PO}_4)_2$ is 6.2×10^{-12} mol/L. Calculate the K_{sp} value.

Example 2

What is the solubility of silver chloride in g/L if $K_{sp} = 1.6 \times 10^{-10}$?

Predicting Precipitation

- Last year, we used solubility tables, like the one below to predict whether two solutions would form a precipitate


Table 3 Solubility of Some Ionic Compounds at SATP

Anions	Cations	
	high solubility ≥ 0.1 mol/L at SATP	low solubility < 0.1 mol/L at SATP
F ⁻	most	Li ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Fe ²⁺ , Hg ₂ ²⁺ , Pb ²⁺
Cl ⁻ , Br ⁻ , I ⁻	most	Ag ⁺ , Pb ²⁺ , Tl ⁺ , Hg ₂ ²⁺ , Hg ⁺ , Cu ⁺
S ²⁻	Group 1, Group 2, NH ₄ ⁺	most
OH ⁻	Group 1, NH ₄ ⁺ , Sr ²⁺ , Ba ²⁺ , Tl ⁺	most
SO ₄ ²⁻	most	Ag ⁺ , Pb ²⁺ , Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Ra ²⁺
CO ₃ ²⁻ , PO ₄ ³⁻ , SO ₃ ²⁻	Group 1, NH ₄ ⁺	most
C ₂ H ₃ O ₂ ⁻	most	Ag ⁺
NO ₃ ⁻	all	none
IO ₃ ⁻	NH ₄ ⁺ , K ⁺ , Na ⁺	most

- Ex: copper (II) nitrate + magnesium chloride →

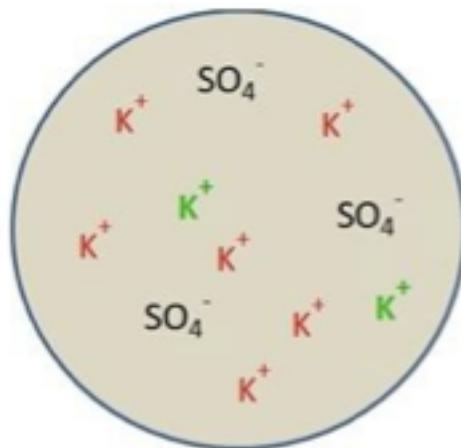
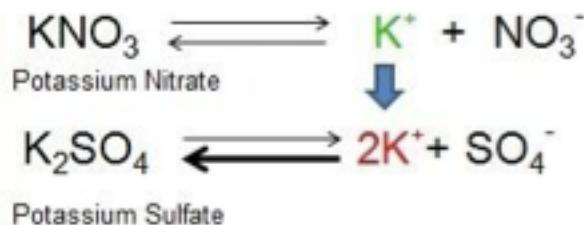
The Trial Ion Product (Q)

- When we know the concentrations of ions in aqueous solution, we can use a *quantitative* method to predict whether a precipitate will form
- The **trial ion product (Q)** is the concentration of ions in a specific solution raised to powers equal to their coefficients in a balanced chemical equation (essentially it is the reaction quotient for a solubility equilibrium)
- The trial ion product can be compared to the solubility product constant (K_{sp}) to determine whether a precipitate will form

$$Q = [\text{Ca}^{2+}(\text{aq})][\text{F}^-(\text{aq})]^2$$

If $Q < K_{sp}$

If $Q = K_{sp}$



If $Q > K_{sp}$

Example 3

- If 2.00 mL of 0.200 M NaOH are added to 1.00 L of 0.100 M CaCl_2 , will a precipitate of $\text{Ca}(\text{OH})_2$ form? K_{sp} of $\text{Ca}(\text{OH})_2 = 8.0 \times 10^{-6}$

The Common Ion Effect

- The common ion effect is a reduction in the solubility of an ionic compound due to the presence of a common ion in solution

Example 4

- What is the molar solubility of AgBr in
 - a) Pure water?
 - b) 0.0010 M NaBr?

HOMEWORK

Required Reading:

p. 460 – 471

(remember to supplement your notes!)

Questions:

P. 462 #1-3

P. 464 #1-4

P. 468 #1-4

P. 470 #1-3

*if you're not part of
the solution, you're
part of the precipitate*