

Chapter 8.1

The Nature of Acids and Bases

Learning Goals: I will be able to ...

1. **explain** the Arrhenius and Bronsted-Lowry theories of acids and bases
2. **identify** acid ionization constant, K_a , and write the expression for it

Acid-Base Theories

The “Boyz”

Arrhenius Theory of Acids

- Acid: molecular substances that breaks-ups in aqueous solution into H^+ and anions
- H^+ (“hydrogen ions” or “protons”)
- H^+ gives acids its protons
- Example: $\text{HCl}_{(\text{g})} \rightarrow \text{H}^+_{(\text{aq})} + \text{Cl}^-_{(\text{aq})}$

Common Acids

Name	Formula	Acid Strength	Common Uses/Notes
Sulfuric acid	H_2SO_4	Strong	Battery acid; extremely corrosive
Nitric acid	HNO_3	Strong	Manufacture of fertilizers, explosives
Hydrochloric acid	HCl	Strong	Cleaning of metals, bricks; removing scale from boilers
Phosphoric acid	H_3PO_4	Moderate	Manufacture of fertilizers; acidulant for foods
Hydrogen sulfate ion	HSO_4^-	Moderate	Toilet bowl cleaners
Lactic acid	$\text{CH}_3\text{CHOHCOOH}$	Weak	Acidulant for soda pop, foods
Acetic acid	CH_3COOH	Weak	Vinegar; acidulant
Carbonic acid	H_2CO_3	Weak	Unstable; formed in aqueous CO_2
Boric acid	H_3BO_3	Very weak	Antiseptic eye wash
Hydrocyanic acid	HCN	Very weak	None; extremely toxic

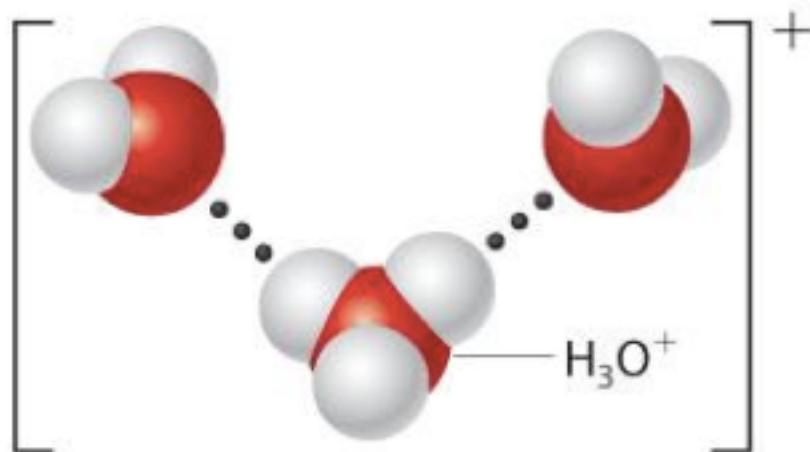
Arrhenius Theory of Bases

- Base: releases OH^- ions in aqueous solution
- OH^- (hydroxide ions)
- OH^- gives bases their properties
- Example: $\text{NaOH}_{(\text{aq})} \rightarrow \text{Na}^+_{(\text{aq})} + \text{OH}^-_{(\text{aq})}$

Common Bases

Name	Formula	Classification	Common Uses/Notes
Sodium hydroxide	NaOH	Strong	Acid neutralization; soap making; dehorning calves
Potassium hydroxide	KOH	Strong	Making liquid soaps; absorbing CO ₂
Lithium hydroxide	LiOH	Strong	Alkaline storage batteries
Calcium hydroxide	Ca(OH) ₂	Strong*	Mortar, plaster, cement; water purification
Magnesium hydroxide	Mg(OH) ₂	Strong*	Antacid, laxative
Ammonia	NH ₃	Weak	Fertilizer, household cleansers

* Although these bases are classified as strong, they are not very soluble. Calcium hydroxide is only slightly soluble in water, and magnesium hydroxide is practically insoluble.


Limitations of Arrhenius Theory

- H^+ does not exist in solution
- More likely to find H^+ attached to H_2O (hydrated)
 - H_3O^+
- Some bases, like ammonia, do not fit this definition, the solution is basic, but the compound does not dissociate, forming hydroxide ion
 - $\text{NH}_{3(g)} + \text{H}_2\text{O}_{(l)} \rightarrow \text{NH}_4^+_{(aq)} + \text{OH}^-_{(aq)}$
- Limited to the solvent water, but acid-base reactions can occur in other solvents

The Hydronium Ion, $\text{H}_3\text{O}^+_{(\text{aq})}$

Many acid-base reactions occur in water.

- Acids such as $\text{HCl}_{(\text{aq})}$ break apart in water
- The proton, H^+ , covalently bonds to water molecules forming the hydronium ion, $\text{H}_3\text{O}^+_{(\text{aq})}$
- $\text{H}_3\text{O}^+_{(\text{aq})}$ is indicated using the shorter form $\text{H}^+_{(\text{aq})}$
- Ionization occurs – process in which a charged particle (ion) is formed

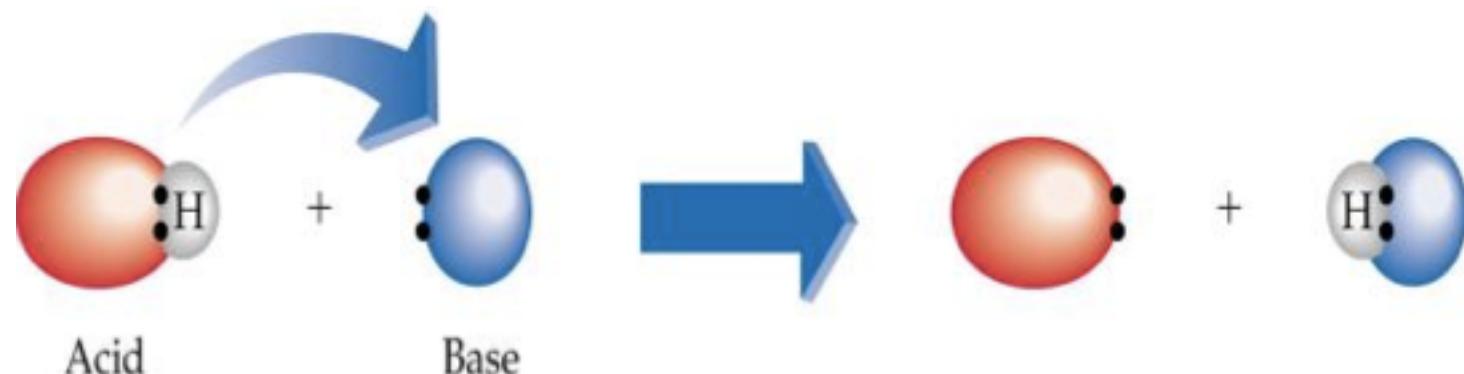
When acids like HCl dissociate in water, the hydronium ion, $\text{H}_3\text{O}^+_{(\text{aq})}$, forms. This ion bonds with surrounding water molecules.

Bronsted and Lowry

Johannes Brønsted
Copenhagen
(Denmark)



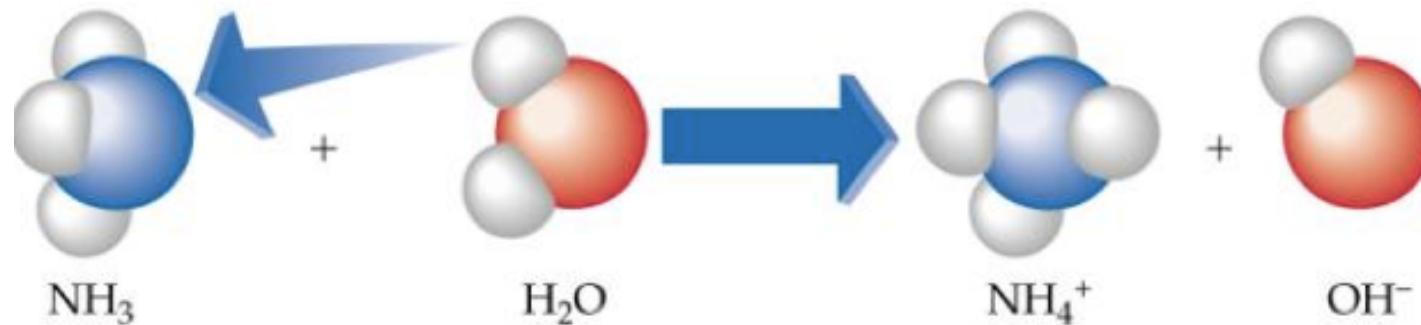
Thomas Lowry
London (England)



Bronsted-Lowry Theory of Acids

- Acid: proton (H^+) donor

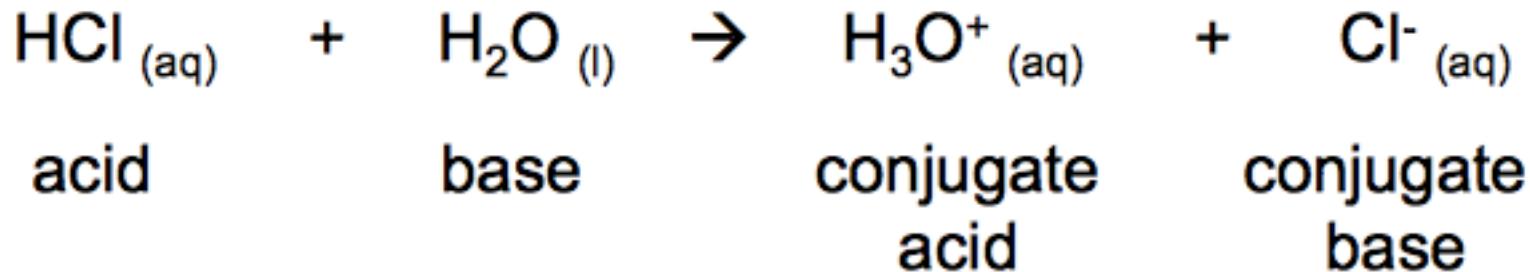
- HCl donates a H^+ to NH_3
 - H^+ does not exist by itself



Bronsted-Lowry Theory of Bases

- Bases: accept a proton

- NH_3 accepts a H^+ from H_2O



Copyright © 2004 Pearson Prentice Hall, Inc.

- A Bronsted-Lowry acid must have a H in its formula (like an Arrhenius acid)
- Any negative ion can be a Bronsted-Lowry base

For an acid-base reaction:

- There must be a transfer of a proton
- A substance can behave as an acid, if another substance behaves as a base
- i.e. there is a proton donor (acid) and a proton acceptor (base)

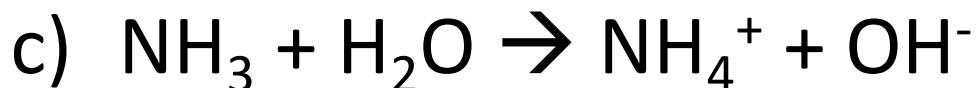
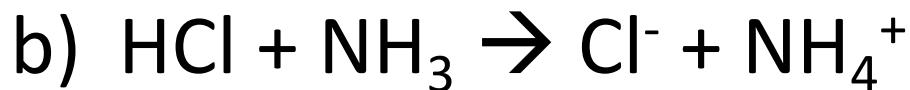
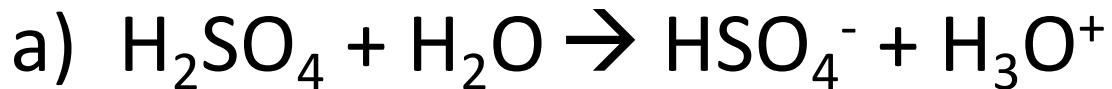
Conjugate acid-base pair

- The two molecules or ions related by transfer of a proton from one to the other (**conjugate** means “linked together”)

Example: $\text{HCl}_{(\text{aq})}$ and $\text{H}_2\text{O}_{(\text{l})}$

- HCl donates the proton and H_2O receives the proton

Conjugate base of an acid

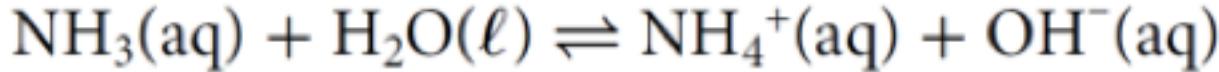
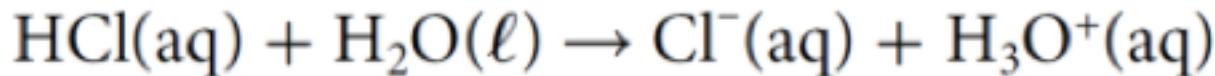



- The particle remaining when the proton is removed from the acid
- $\text{HCl}_{(\text{aq})}$ is acid
- Remove proton $\rightarrow \text{Cl}^{-}_{(\text{aq})}$ is conjugate base

Conjugate acid of a base

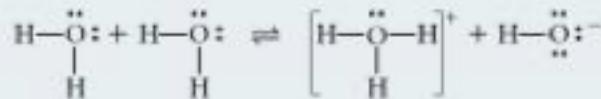
- The particle produced when a base receives a proton
- $\text{H}_2\text{O}_{(\text{l})}$ is a base
- Add proton $\rightarrow \text{H}_3\text{O}^+_{(\text{aq})}$ is conjugate acid

Practice

Identify the conjugate acid-base pair:

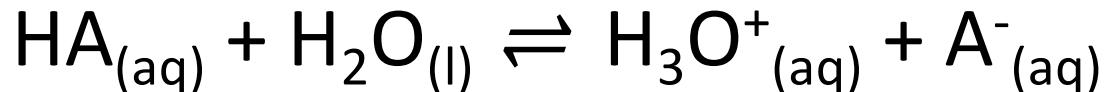



Comparing the Arrhenius and Bronsted-Lowry Theory



Theory	Arrhenius	Brønsted-Lowry
Acid	any substance that dissociates to form H ⁺ in aqueous solution	any substance that provides a proton to another substance (or any substance from which a proton may be removed)
Base	any substance that dissociates to form OH ⁻ in aqueous solution	any substance that receives a proton from an acid (or any substance that removes a proton from an acid)
Example	$\text{HCl}_{(\text{aq})} \rightarrow \text{H}^+_{(\text{aq})} + \text{Cl}^-_{(\text{aq})}$	$\text{HCl}_{(\text{aq})} + \text{H}_2\text{O}_{(\text{l})} \rightarrow \text{H}_3\text{O}^+_{(\text{aq})} + \text{Cl}^-_{(\text{aq})}$

Both an Acid and a Base: Amphiprotic Substances

- Water molecules are **amphiprotic** – acting as an acid or a base.



Water undergoes autoionization and can act as both a Brønsted-Lowry acid or a Brønsted-Lowry base.

The Acid Ionization Constant, K_a

- The **acid ionization constant, K_a** , is used for reactions in which an acid $\text{HA}_{(\text{aq})}$, reacts with water to form a conjugate base, $\text{A}^{-}_{(\text{aq})}$.

$$K = \frac{[\text{H}_3\text{O}^+_{(\text{aq})}][\text{A}^{-}_{(\text{aq})}]}{[\text{H}_2\text{O}_{(\text{l})}][\text{HA}_{(\text{aq})}]}$$

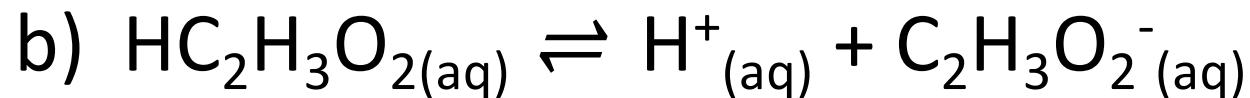
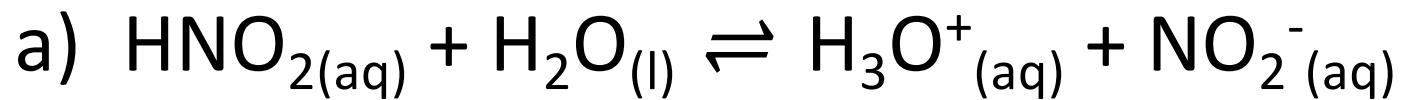


$$K_a = \frac{[\text{H}_3\text{O}^+_{(\text{aq})}][\text{A}^{-}_{(\text{aq})}]}{[\text{HA}_{(\text{aq})}]}$$

Table 1 Some Acid Ionization Constants

Acid	Acid ionization constant, K_a
hydrocyanic, HCN(aq)	6.2×10^{-10}
benzoic, $\text{C}_6\text{H}_5\text{CO}_2$ (aq)	6.3×10^{-5}
propanoic, $\text{C}_3\text{H}_5\text{O}_2$ (aq)	1.3×10^{-5}
ethanoic (acetic), $\text{C}_2\text{H}_3\text{O}_2$ (aq)	1.8×10^{-5}
hydrofluoric, HF(aq)	6.6×10^{-4}
nitrous, HNO_2 (aq)	4.6×10^{-4}
methanoic (formic), HCHO_2 (aq)	1.8×10^{-4}

Practice

Write the acid ionization constant equation for the equilibrium reaction:

Did You Learn?

- According to the Arrhenius theory, in aqueous solution an acid produces hydrogen ions, H^+ , and a base produces hydroxide ions, OH^- .
- According to the Bronsted-Lowry theory, an acid is a hydrogen ion (proton) donor and a base is a hydrogen ion acceptor.
- When an acid, HA , reacts with water, the water acts as a base and forms a conjugate acid, H_3O^+ . The acid forms a conjugate base, A^- , according to the equation
 - $HA_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + A^-_{(aq)}$
- The acid equilibrium constant, K_a , is represented by

$$K_a = \frac{[H_3O^+_{(aq)}][A^-_{(aq)}]}{[HA_{(aq)}]}$$
 which may be simplified as $K_a = \frac{[H^+_{(aq)}][A^-_{(aq)}]}{[HA_{(aq)}]}$

HOMEWORK

Required Reading:

p. 488 – 494

(remember to supplement your notes!)

Questions:

P. 492 #1, 2

P. 493 #1bc

P. 494 #1-8