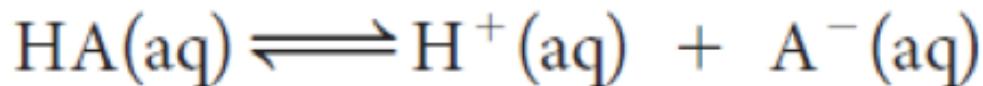


Chapter 8.4

Calculations Involving Acidic Solutions

Learning Goals: I will be able to ...

1. **solve** problems related to equilibrium by **performing** calculations involving concentrations of reactants and products (K_a , pH, pOH, K_w , K_b)
2. **determine** K_a , percent ionization, pH using K_a , and K_a from weak acid concentration
3. **predict** K_a trends for polyprotic acids and ionization


Strong Acids

- Since strong acids almost completely ionize in water, we can assume that the concentration of hydrogen ions is equal to the concentration of the acid.
- Ex: A solution of hydrochloric acid has a concentration of 0.1 mol/L. Calculate:
 - $[H^+_{(aq)}]$
 - $[OH^-_{(aq)}]$
 - pH
 - pOH

Weak Acids and Percent Ionization

- **Percentage ionization** is the percentage of a solute that ionizes when it dissolves in a solvent

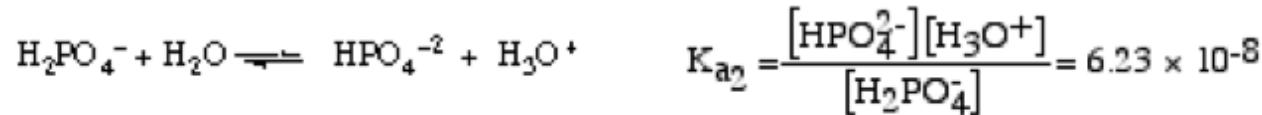
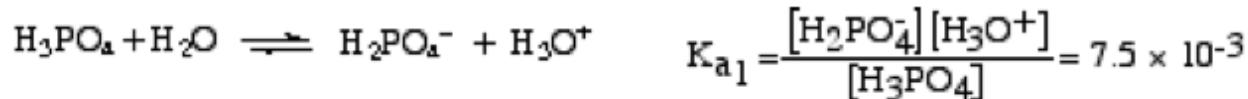
$$\text{percentage ionization} = \frac{\text{concentration of ionized acid}}{\text{initial concentration of acid}} \times 100 \%$$

$$\text{percentage ionization} = \frac{[\text{H}^+(\text{aq})]}{[\text{HA(aq)}]} \times 100 \%$$

Using % Ionization to find K_a

Calculate the K_a of hydrofluoric acid, $\text{HF}_{(\text{aq})}$, if a 0.100 mol/L solution at equilibrium has a percent ionization of 7.8 %.

Using K_a to find pH



Calculate the pH of a 0.10 mol/L acetic acid solution. K_a for acetic acid is 1.8×10^{-5} .

Using pH to find K_a

A student prepares a 0.20 mol/L aqueous solution of ascorbic acid, and measures its pH as 2.40. Based on this evidence, what is the K_a of ascorbic acid?

Polyprotic Acids

- A **monoprotic acid** is an acid that possesses only one ionizable (acidic) hydrogen atom
- A **polyprotic acid** is an acid that possesses more than one ionizable (acidic) hydrogen atom

- Notice that the value of K_{a1} is much greater than the value of K_{a2}

Polyprotic Acids

Acid	Formula	K_{a1}	K_{a2}	K_{a3}
oxalic acid	$\text{H}_2\text{C}_2\text{O}_4(\text{aq})$	5.4×10^{-2}	5.4×10^{-5}	–
ascorbic acid	$\text{H}_2\text{C}_6\text{H}_6\text{O}_6(\text{aq})$	7.9×10^{-5}	1.6×10^{-12}	–
sulfuric acid	$\text{H}_2\text{SO}_4(\text{aq})$	very large	1.0×10^{-2}	–
hydrosulfuric acid	$\text{H}_2\text{S}(\text{aq})$	1.1×10^{-7}	1.3×10^{-13}	–
phosphoric acid	$\text{H}_3\text{PO}_4(\text{aq})$	7.1×10^{-3}	6.3×10^{-8}	4.2×10^{-13}
arsenic acid	$\text{H}_3\text{AsO}_4(\text{aq})$	5×10^{-3}	8×10^{-8}	4.0×10^{-12}
carbonic acid	$\text{H}_2\text{CO}_3(\text{aq})$	4.4×10^{-7}	4.7×10^{-11}	–

$$K_{a1} > K_{a2} > K_{a3}$$

Practice

Calculate the pH of a 1.00 mol/L solution of sulfuric acid, $\text{H}_2\text{SO}_{4(\text{aq})}$.

HOMEWORK

Required Reading:

p. 512 – 525

(remember to supplement your notes!)

Questions:

P. 513 #1, 2

P. 516 #1, 2

P. 520 #1, 2

P. 521 #1, 2

P. 524 #1, 2

P. 525 #1-9

Silent labs, difficult labs

All with math, all with graphs

Observations of colors and smells

Calculations and graph curves like bells

Memories of tests that have past

Oh, how long will chemistry last?

Silent labs, difficult labs

All with math, all with graphs

Lots of equations that need balancing
titration problems that make my head ring

Santa Chemistry's on his way

Oh, Please Santa bring me an 'A'.

Chapter 8.5

Calculations Involving Basic Solutions

Learning Goals: I will be able to

calculate K_b , $[H^+_{(aq)}]$, $[OH^-_{(aq)}]$ and pH
for strong and weak bases

Strong Bases

A solution of calcium hydroxide has a concentration of 0.05 mol/L. Calculate the

- a) $[\text{H}^+_{(\text{aq})}]$
- b) $[\text{OH}^-_{(\text{aq})}]$
- c) pH of the solution

Weak Bases

A solution of aniline, $C_6H_5NH_2$, has a concentration of 5.0 g/L and the pH of the solution is 8.68. Calculate the K_b for aniline.

Weak Bases

Quinine, $C_{20}H_{24}N_2O_2$, has a K_b of 3.3×10^{-6} . What are the hydroxide ion concentration and pH of a 3.6×10^{-3} mol/L solution of quinine?

HOMEWORK

Required Reading:

p. 526 – 530

(remember to supplement your notes!)

Questions:

P. 527 #1, 2

P. 529 #1-3

P. 530 #1-9

