Chapter 3 Assignment: Roller Coaster

Apply your knowledge of polynomial functions to create a design on https://www.desmos.com/calculator for a ride on a waterpark that shows the graph representing the height of the roller coaster versus horizontal distance. Some portions of each section may be underwater. You must submit a UNIQUE design that is your own work. Try to be creative with your design and make it fun!

You design must meet the following criteria:

- 1. There must be two different sections to your ride:
 - section 1: a polynomial function of an odd degree (not linear)
 - section 2: a polynomial function of even degree (not quadratic)
- 2. Both functions must:
 - significantly different from one another
 - have three or more terms in standard form
 - be factorable
- 3. You must provide a "legend" that states the polynomial equation for each of the sections of the ride:
 - in standard form
 - in factored form
 - state the degree, leading coefficient, number of turning points, domain and range for both polynomial functions

Criteria	Function 1:	Function 2:
	Standard form:	Standard form:
	Factored form:	Factored form:
Degree		
Leading coefficient		
Number of		
turning points		
Domain		
Range		

- 4. Answer the following questions:
 - state the roots of the polynomials and interpret their meaning in the context of this question.
 - state the local maxima and minima of the polynomials and interpret their meaning in the context of this question
- 5. Submit your answers as a pdf file and submit the link to your Desmos design to Moodle drop box.

Grading Rubric

Thinking Two different polynomial functions are shown in the design.	Incomplete O points	Only one polynomial function is shown. 1 points	Two polynomial functions shown but one is quadratic or linear. 2 points	Two different polynomial functions are shown but they are not connected in the diagram. 3 points	Two different polynomial functions are shown in the design. 4 points
Applications Legend of characteristics provided.	Incomplete O points	Legend of characteristics provided for both polynomials with many incorrect answers. 1 points	Legend of characteristics provided for both polynomials with 3 or 4 incorrect answers. 2 points	Legend of characteristics provided for both polynomials with one or two incorrect answers. 3 points	Legend of characteristics provided for both polynomials with correct answers. 4 points
Thinking Intercepts and local extrema are interpreted in the context of this design.	Incomplete O points	Thinking Intercepts and local extrema are interpreted in the context of this design with many mistakes. 1 points	Thinking Intercepts and local extrema are interpreted in the context of this design with minor mistakes and a few missing steps. 2 points	Thinking Intercepts and local extrema are interpreted in the context of this design with some minor mistakes. 3 points	Thinking Intercepts and local extrema are interpreted in the context of this design correctly. 4 points