Section 4.7: Intermolecular Forces Tutorial 1 Practice, page 244

1. Of CH₃OH, CH₃CH₂OH, and CH₃CH₂CH₂OH, CH₃CH₂CH₂OH has the highest boiling point. All three molecules will experience dipole–dipole interactions, because of their hydrogen bonds, which provide an attractive force in a liquid. But CH₃CH₂CH₂OH has the highest molecular mass, so it will have the greatest London dispersion forces and thus the highest boiling point.

2. Of $CH_3CH_2CH_2CH_2NH_2$ and Cl_2 , Cl_2 will have the lower boiling point because $CH_3CH_2CH_2CH_2NH_2$ has dipole–dipole forces whereas Cl_2 has only London dispersion forces, which is a weaker force.

Section 4.7 Questions, page 247

1. (a) HBr has the highest boiling point of HBr, Kr, and Cl₂. HBr has dipole–dipole forces between its molecules as well as London dispersion forces while the other substances have only London dispersion forces.

(b) NaCl has the highest freezing point of H_2O , NaCl, and HBr because NaCl is an ionic compound. The ionic bond in NaCl is a stronger attractive force than any of the intermolecular forces in the other molecules.

(c) Of Cl_2 , Br_2 , and I_2 , I_2 has the lowest vapour pressure at 25 °C. I_2 is the largest molecule and will have the strongest London dispersion forces, which prevent the substance from changing into vapour.

(d) N_2 has the lowest freezing point of N_2 , CO, and CO₂. N_2 has the weakest interactions because it is the smallest molecule and exerts only London dispersion forces.

(e) CH₄, has the lowest boiling point of CH₄, CH₃CH₃, and CH₃CH₂CH₃. CH₄ is the smallest molecule of all and will have the weakest London dispersion forces.

(f) HF has the highest boiling point of HF, HCl, and HBr. HF will have the strongest dipole–dipole forces due to hydrogen bonding.

2. (a) CBr₄ has the highest boiling point of CCl₄, CF₄, and CBr₄. CBr₄ is the largest molecule and will have the strongest London dispersion forces.

(b) F_2 has the lowest freezing point of LiF, F_2 , and HCl. F_2 has the weakest intermolecular forces because it has only London dispersion forces.

(c) Of CH₃OCH₃, CH₃CH₂OH, and CH₃CH₂CH₃, CH₃CH₂OH has the lowest vapour pressure at 25 °C. CH₃CH₂OH has the strongest intermolecular forces because it has the strongest dipole–dipole forces due to hydrogen bonding.

(d) H_2O_2 has the greatest viscosity of HF and H_2O_2 . H_2O_2 has more hydrogen bonding than HF does because it can form hydrogen bonds at both ends of the molecule.

(e) H₂CO has the greatest heat of vaporization of H₂CO, CH₃CH₃, and CH₄. H₂CO has the strongest intermolecular forces because of its dipole–dipole interactions.

3. (a) Ammonia has a very high solubility in water because it is a polar molecule and has hydrogen bonding.

(b) Diagram of water interacting with ammonia molecules:

4. (a) OCS has stronger intermolecular forces than CO_2 , since in OCS there is a net dipole in the direction of the O, creating dipole–dipole forces between molecules, whereas CO_2 will only have London dispersion forces.

(b) SeO_2 has stronger intermolecular forces than SO_2 . Both SO_2 and SeO_2 have dipoles due to the bent shape of the molecules, but the bonds between oxygen and selenium are more polar than the bonds of SO_2 because selenium is less electronegative than sulfur is. Since SeO_2 has a stronger dipole, its dipole–dipole interactions are stronger. Also, Se is a larger molecule than S and will create larger London dispersion forces between molecules.

(c) H₂NCH₂CH₂NH₂ has stronger intermolecular forces than CH₃CH₂CH₂NH₂.

 $H_2NCH_2CH_2NH_2$ will create larger dipole–dipole forces between molecules due to the presence of an additional nitrogen atom (more opportunities for hydrogen bonding). (d) H_2CO has stronger intermolecular forces than CH_3CH_3 . H_2CO has dipole–dipole forces between molecules, which are stronger than the London dispersion forces of CH_3CH_3 .

(e) CH_3OH has stronger intermolecular forces than H_2CO . Both molecules have dipoledipole forces between molecules but CH_3OH can also undergo hydrogen bonding. In H_2CO , the hydrogen atoms are bonded to carbon, not oxygen.

5. Of the compounds Cl_2 , HCl, F_2 , NaF, and HF, the one that has a boiling point closest to that of argon is F_2 . Ar has a very low boiling point, due to the very weak interatomic forces of the noble gases. NaF is an ionic compound with a high boiling point. HCl and HF have dipole–dipole forces between molecules, so they will also have high boiling points. Cl_2 is a larger molecule than F_2 , so Cl_2 will have larger London dispersion forces between molecules than F_2 does.

6. Matching boiling points and compounds:

(a) Ethanol's boiling point is 78.5 °C. Ethanol, CH₃CH₂OH, has the highest of the three boiling points because it has the strongest dipole–dipole forces between molecules due to hydrogen bonding.

(b) Dimethyl ether's boiling point is -23 °C. Dimethyl ether, CH₃OCH₃, has the second-highest boiling point because it has dipole–dipole forces between molecules.

(c) Propane's boiling point is -42.1 °C. Propane, CH₃CH₂CH₃, has the lowest boiling point because it has only London dispersion forces between molecules.

7. (a) London dispersion forces, dipole–dipole forces, and hydrogen bonding are all present in alcohols.

(b) London dispersion forces, dipole–dipole forces, and hydrogen bonding are all present in amines.

(c) London dispersion forces are present in hydrocarbons.

(d) London dispersion forces, dipole–dipole forces, and hydrogen bonding are all present in carboxylic acids.

(e) London dispersion forces and dipole-dipole forces are present in ethers.

8. If the molecular masses of the compounds listed in Question 4 were equal, you would expect the compound with the strongest intermolecular forces to have the highest boiling point. Eliminating the compounds with no hydrogen bonding leaves $H_2NCH_2CH_2NH_2$,

 $CH_3CH_2CH_2NH_2$, and CH_3OH . Of these, $H_2NCH_2CH_2NH_2$ has the most opportunities for hydrogen bonding, so $H_2NCH_2CH_2NH_2$ will have the highest boiling point.