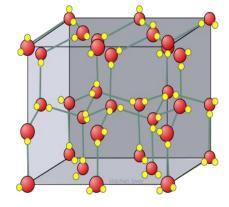
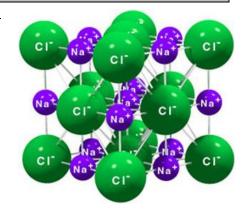
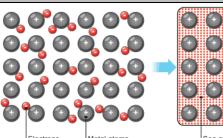
4.8 THE STRUCTURE AND PROPERTIES OF SOLIDS


IONIC CRYSTALS

- Ionic crystals are built up from an alternating sequence of
- Ions arrange themselves in a solid to _____ • between oppositely charged ions and between like charges
- The type of packing and the shape of the crystal depends on the • relative _____ and _____ of the ions lonic solids are _____
- •
- •
- do not conduct electricity, but in ______, or in ______ they do conduct electricity lonic crystals have high ______ (because of the strong ionic bonds) (Bond Energy: 400-4000 kJ/mol) •


METALLIC CRYSTALS


- Not all metallic crystals have similar physical properties
- Metallic crystals are made up of closely packed atoms whose valence electrons around the positively charged nuclei (electron sea theory)
- The free floating electrons move around many nuclei and hold multiple positive nuclei together
- Metallic bond is due to ______ and the sea of ______ (75-1000 kJ/mol)
 The metal atoms involved in metallic bonding must have a low ______ (since they do not hold on to their electrons strongly and electrons move beyond valence shells)
- Lustre valence electrons ______ and _____ the energy of all wavelengths of light
- Electrical Conductivity when an electrical force is applied, the
- Heat Conductivity heat applied to one section of a metal electrons at this point. This motion is transmitted to nearby electrons and the motion (________) of the rapidly travelling electrons results in the bastism of the •
- Malleability/Ductility metals are malleable and ductile •
- Hardness Strong ______ between positively charged nuclei and sea of electrons

MOLECULAR CRYSTALS

- Molecular crystals are held together in
- Certain substances form molecular crystals in the solid state and certain substances can form variations of crystals
- A molecular crystal is a solid crystal that consists of molecules held
- polar molecules are held together by _____) and
- Non-polar molecules are held together by
- These crystals do not conduct electricity, because they are composed of ______ molecules (both in solid and solution form)

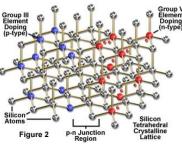
Sea of delocalised electrons

COVALENT NETWORK CRYSTALS

- As the name suggests, these crystals consist of ______ bonds that are organized into an ______ and ______ network
- Covalent Network Crystals have _____ melting points and are very hard because of the interlocking network of many carbons arranged in a variety of geometries
- These crystals are _____ conductors of electricity, because the atoms and covalent bonds hold electrons in space

	Diamond	Graphite
Structure	3-D; each carbon is	- 3-D; each carbon is (bonded to 3 C)
	(bonded to 4 C)	- Arranged in
		hold carbons
		together within a later
		hold layers
		together
Hardness		
Melting Point		
Electrical Conductivity		(consists of free mobile electrons from p orbital)
Uses	Gem stones, cutting, drilling	Lubricant for machines at high temp,
		pencils, electrodes, sporting
		equipment
Image		$ \begin{array}{c} & & & & & & \\ & & & & & \\ \hline & & & & \\ 335 \text{ pm} \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} $

Other Examples of Covalent Network Crystals


- Cage-like arrangement of 60 carbon atoms in a sphere or soccer-ball like structure

- Similar to structure of graphite, except rolled

in a cylinder

Most covalent networks are composed of ______ and _____ and _____ is made up of silica (SiO₂). Quartz forms a structure similar to a typical network crystal. Glass is much more disordered. It is more like a viscous liquid than a crystal solid (it is the result of heating silica and cooling it rapidly). Additives are added to glass to make it stronger or to change other properties.

Semiconductors			
These are covalent cr	or		
and conduct electricity at room temperature, but increase their			
at higher	Many of these conductors have		
and	additives which increase or decrease		
and allow for more electron movement between atoms and			
excitation, increasing	the	of the solid.	

