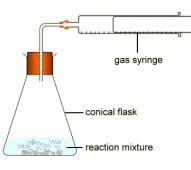
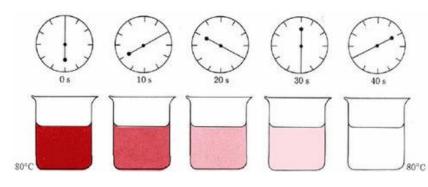
# **Reaction Rates**


Chapter 6.1

#### **Reaction Rates**

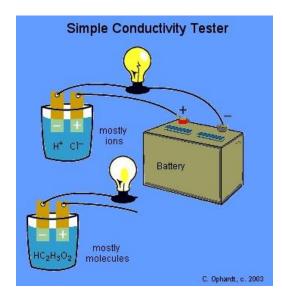
- Chemical Kinetics is the branch of chemistry concerned with the rates of chemical reactions
- Reaction Rate is the change in concentration of a reactant or a product of a chemical reaction per unit time

#### **Measuring Reaction Rates**


#### volume



#### mass




#### colour



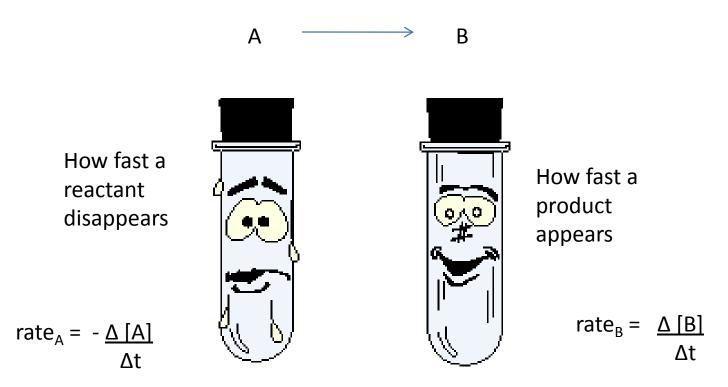


рΗ

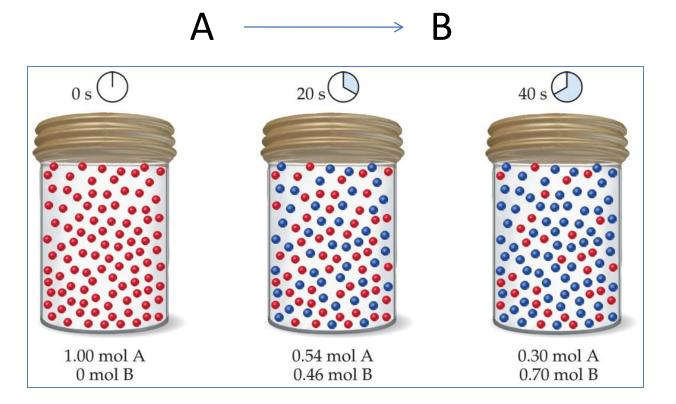


#### electrical conductivity

### **Calculating Average Reaction Rates**


 Average Reaction Rate is the change in reactant or product concentration over a given time interval

$$\operatorname{rate}_{A} = \frac{\operatorname{concentration of A at time } t_{2} - \operatorname{concentration of A at time } t_{1}}{t_{2} - t_{1}}$$
$$\operatorname{rate}_{A} = \frac{\Delta[A]}{\Delta t}$$


 The units for average reaction rate are mol/L•s

## **Calculating Average Reaction Rates**

• The average rate of reaction can be calculated in two ways:



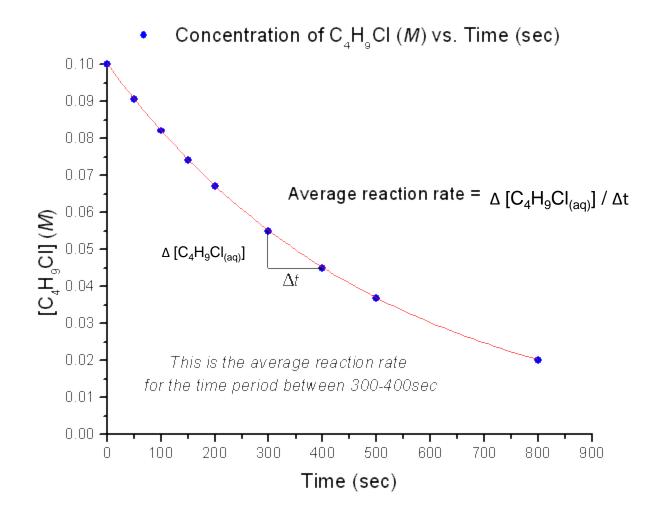
#### Consider the following reaction:

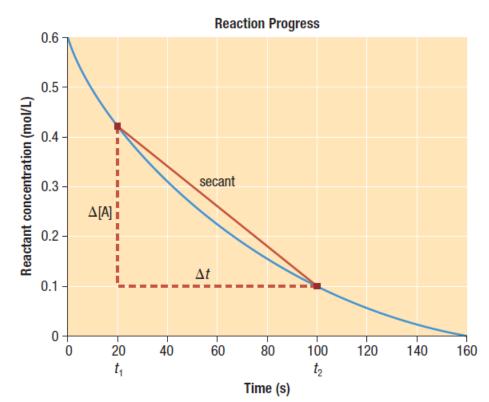


Calculate the average rate at which reactant A is consumed

Calculate the average rate at which product B is produced

### **Calculating Average Reaction Rate**


 $C_4H_9CI_{(aq)} + H_2O_{(I)} \longrightarrow C_4H_9OH_{(aq)} + HCI_{(aq)}$ 

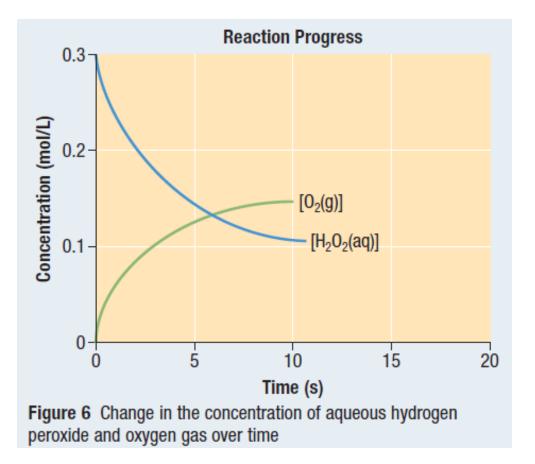

| Time, <i>t</i> (s) | [C <sub>4</sub> H <sub>9</sub> C1] ( <i>M</i> ) |                                                               |
|--------------------|-------------------------------------------------|---------------------------------------------------------------|
| 0.0                | 0.1000                                          | • Calculate the average rate of disappearance of chlorobutane |
| 50.0               | 0.0905                                          |                                                               |
| 100.0              | 0.0820                                          | a) between 0s and 50.0s                                       |
| 150.0              | 0.0741                                          |                                                               |
| 200.0              | 0.0671                                          |                                                               |
| 300.0              | 0.0549                                          |                                                               |
| 400.0              | 0.0448                                          |                                                               |
| 500.0              | 0.0368                                          | b) between 50.0s and 100.0s                                   |
| 800.0              | 0.0200                                          |                                                               |
| 10,000             | 0                                               |                                                               |

• What patterns do you notice in the data table below?

$$C_4H_9CI_{(aq)} + H_2O_{(I)} \longrightarrow C_4H_9OH_{(aq)} + HCI_{(aq)}$$

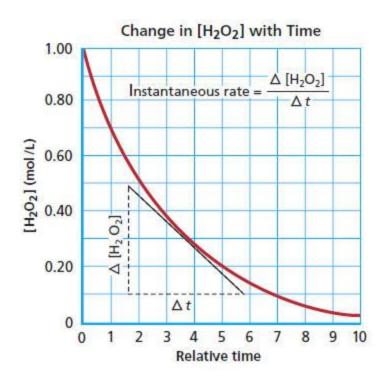
| Time, <i>t</i> (s) | [C <sub>4</sub> H <sub>9</sub> Cl] ( <i>M</i> ) | Average Rate ( <i>M</i> /s)                            |
|--------------------|-------------------------------------------------|--------------------------------------------------------|
| 0.0                | 0.1000                                          |                                                        |
| 50.0               | 0.0905                                          | $> 1.9 \times 10^{-4}$                                 |
| 100.0              | 0.0820                                          | $> 1.7 \times 10^{-4}$                                 |
| 150.0              | 0.0741                                          | $> 1.6 \times 10^{-4}$                                 |
| 200.0              | 0.0671                                          | $> 1.4 \times 10^{-4}$                                 |
| 300.0              | 0.0549                                          | $> 1.22 \times 10^{-4}$                                |
| 400.0              | 0.0448                                          | $ 1.01 \times 10^{-4} $                                |
| 500.0              | 0.0368                                          | $ >> 0.80 \times 10^{-4} $ $ >> 0.560 \times 10^{-4} $ |
| 800.0              | 0.0200                                          | 0.360 × 10 -                                           |
| 10,000             | 0                                               |                                                        |






The average reaction rate can be calculated from the **slope of the secant** on a concentration-time graph

$$\operatorname{rate}_{A} = -\frac{\Delta[A]}{\Delta t}$$
 or  $-\frac{\Delta y \text{ (concentration)}}{\Delta x \text{ (time)}}$ 


**Figure 4** Concentration of a reactant, A, plotted as a function of time. The average rate of disappearance of the reactant from point  $t_1$  to point  $t_2$  is the slope of the secant line.

• What chemical reaction does this graph show?



#### Instantaneous Rate of Reaction

- Instantaneous reaction rate is the rate of a chemical reaction at a single point in time
- It can be calculated from the slope of the tangent on a concentration-time graph



### Stoichiometric Rate Relationships

• Consider the following reaction:

$$2H_2O_{2(I)} \longrightarrow O_{2(g)} + 2H_2O_{(I)}$$

• We can use the stoichiometry of the reaction to conclude that the rate of appearance of oxygen is equal to half of the rate of disappearance of hydrogen peroxide

### Stoichiometric Rate Relationships

We can use the stoichiometry of a chemical reaction to make predictions about reaction rate

In general:

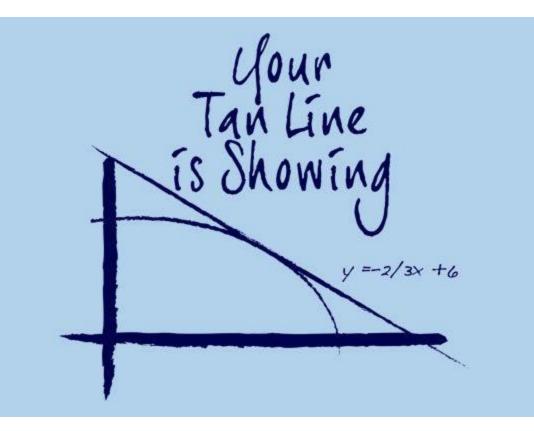
 $aA + bB \longrightarrow cC + dD$  $rate = -\frac{1}{a} \frac{\Delta [A]}{\Delta t} = -\frac{1}{b} \frac{\Delta [B]}{\Delta t} = \frac{1}{c} \frac{\Delta [C]}{\Delta t} = \frac{1}{d} \frac{\Delta [D]}{\Delta t}$ 

### Practice

- Dinitrogen pentoxide gas decomposes to produce nitrogen dioxide gas and oxygen gas. If the rate of appearance of NO<sub>2(g)</sub> is 2.0 X10<sup>-2</sup>mol/L•s at 90s.
- a) Determine the rate of appearance of  $\rm O_{2(g)}$  at the same point in time
- b) Determine the rate of disappearance of  $N_2O_{5(g)}$  at the same point in time

#### HOMEWORK

#### **Required Reading:**


#### p. 346-361

(remember to supplement your notes!)

**Questions:** 

- p. 350 #1
- p. 352 #1
- p. 356 #1-2
- p. 360 #1-3

p. 361 #1-5

