Section 6.1: Reaction Rates

Tutorial 1 Practice, page 350

1. (a) Given: $[H_2(g)]_{t=0s} = 1.00 \text{ mol/L}; [H_2(g)]_{t=2.6s} = 0.500 \text{ mol/L}$ **Required:** average rate of disappearance of hydrogen gas over the first 2.16 s **Analysis:** Since the average rate of disappearance of a reactant will be a negative number, use the following equation:

$$rate_{A} = -\frac{D[A]}{Dt}$$

Solution: $rate_{H_{2}(g)} = -\left(\frac{D[H_{2}(g)]}{Dt}\right)$

$$= -\left(\frac{[H_{2}(g)]_{t=2.6 \text{ s}} - [H_{2}(g)]_{t=0 \text{ s}}}{2.16 \text{ s} - 0 \text{ s}}\right)$$

$$= -\left(\frac{0.500 \text{ mol/L} - 1.00 \text{ mol/L}}{2.16 \text{ s}}\right)$$

$$= -(-0.231 \text{ mol/(L \cdot s)})$$

 $rate_{H_{1}(g)} = 0.231 \text{ mol/(L \cdot s)}$

Statement: The average rate of disappearance of hydrogen gas over the first 2.16 s of the reaction is $0.231 \text{ mol}/(L \times s)$.

(b) Given:
$$[HCl(g)]_{t=0.5} = 0.00 \text{ mol/L}; [HCl(g)]_{t=4.32.5} = 1.50 \text{ mol/L}$$

Required: average rate of appearance of hydrogen chloride gas over the first 4.32 s **Analysis:** Since the average rate of appearance of a product will be a positive number, use the following equation:

$$\operatorname{rate}_{A} = \frac{D[A]}{Dt}$$
Solution:
$$\operatorname{rate}_{HCI(g)} = \frac{D[HCI(g)]}{Dt}$$

$$= \frac{[HCI(g)]_{t=4.32 \text{ s}} - [HCI(g)]_{t=0 \text{ s}}}{4.32 \text{ s} - 0 \text{ s}}$$

$$= \frac{1.50 \text{ mol/L} - 0.00 \text{ mol/L}}{4.32 \text{ s}}$$

$$\operatorname{rate}_{HCI(g)} = 0.347 \text{ mol/(L} \cdot \text{s})$$

Statement: The average rate of appearance of hydrogen chloride gas over the first 4.32 s of the reaction is $0.347 \text{ mol/}(L \times s)$.

(c) Given: $[Cl_2(g)]_{t=2.16 \text{ s}} = 0.500 \text{ mol/L}; [Cl_2(g)]_{t=4.32 \text{ s}} = 0.250 \text{ mol/L}$

Required: average rate of disappearance of chlorine gas between 2.16 s and 4.32 s **Analysis:** The average rate of disappearance will be a negative number, so use the following equation:

$$rate_A = -\frac{D[A]}{Dt}$$

D.F. 1. 7

Solution: rate_{Cl₂(g)} =
$$-\left(\frac{D[Cl_2(g)]}{Dt}\right)$$

= $-\left(\frac{[Cl_2(g)]_{t=4.32 \text{ s}} - [Cl_2(g)]_{t=2.16 \text{ s}}}{4.32 \text{ s} - 2.16 \text{ s}}\right)$
= $-\left(\frac{0.250 \text{ mol/L} - 0.500 \text{ mol/L}}{2.16 \text{ s}}\right)$
= $-(-0.116 \text{ mol/(L} \cdot \text{s}))$
rate_{Cl₂(g)} = 0.116 mol/(L \cdot s)

Statement: The average rate of disappearance of chlorine gas between 2.16 s and 4.32 s is $0.116 \text{ mol}/(L \times s)$.

(d) Given: $[H_2(g)]_{t=2.16 \text{ s}} = 0.500 \text{ mol/L}; [H_2(g)]_{t=4.32 \text{ s}} = 0.250 \text{ mol/L}$

Required: average rate of disappearance of hydrogen gas between 2.16 s and 4.32 s **Analysis:** The average rate of disappearance will be a negative number, so use the following equation:

$$rate_{A} = -\frac{D[A]}{Dt}$$

Solution: $rate_{H_{2}(g)} = -\left(\frac{D[H_{2}(g)]}{Dt}\right)$

$$= -\left(\frac{[H_{2}(g)]_{t=4.32 \text{ s}} - [H_{2}(g)]_{t=2.16 \text{ s}}}{4.32 \text{ s} - 2.16 \text{ s}}\right)$$

$$= -\left(\frac{0.250 \text{ mol/L} - 0.500 \text{ mol/L}}{2.16 \text{ s}}\right)$$

$$= -(-0.116 \text{ mol/(L \cdot s)})$$

 $rate_{H_{2}(g)} = 0.116 \text{ mol/(L \cdot s)}$

Statement: The average rate of disappearance of hydrogen gas between 2.16 s and 4.32 s is $0.116 \text{ mol}/(L \times s)$.

Tutorial 2 Practice, pages 352–353

1. Given: Figure 6

Required: average rate of appearance of oxygen gas between 5 s and 10 s

Analysis: The average rate of reaction is the slope of the secant line between t = 5 s and t = 10 s.

rate =
$$\frac{Dy}{Dx}$$

Solution: Step 1. From the graph, interpolate the concentrations of oxygen gas at 5 s and 10 s: $[O_2(g)]_{t=5} = 0.13 \text{ mol/L}; [O_2(g)]_{t=10} = 0.15 \text{ mol/L}$

Step 2. Calculate the slope of the secant line.

rate_{O₂(g)} =
$$\frac{Dy}{Dx}$$

= $\frac{0.15 \text{ mol/L} - 0.13 \text{ mol/L}}{10 \text{ s} - 5 \text{ s}}$
rate_{O₂(g)} = $4 \times 10^{-3} \text{ mol/(L} \cdot \text{s})$

Statement: The average rate of appearance of oxygen gas between 5 s and 10 s is $4 \cdot 10^{-3}$ mol/(L×s).

Tutorial 3 Practice, pages 356-357

1. Given: Figure 10

Required: instantaneous rate of appearance of oxygen gas at 4 s

Analysis: In Figure 10, a tangent to the oxygen gas concentration curve is drawn at 4 s. This tangent line is the hypotenuse of a right triangle; Δy is the change in concentration, $D[O_2(g)]_{t=4}$,

and Δx is the change in time, Δt . Determine $D[O_2(g)]_{t=4s}$ and Δt . Then, substitute these values for Δy and Δx in the slope formula to determine the instantaneous rate of appearance of oxygen gas at 4 s.

Solution: Determine $D[O_2(g)]_{t=4}$ and Δt .

$D[O_2(g)]_{t=4 \text{ s}} = 0.135 \text{ mol/L} - 0.085 \text{ mol/L}$	Dt = 7.3 s - 0.7 s
$D[O_2(g)]_{t=4 \text{ s}} = 0.05 \text{ mol/L}$	$Dt = 6.6 \ \mathrm{s}$

Use the slope formula to determine the instantaneous rate.

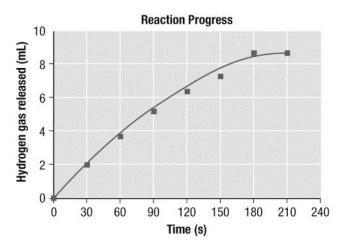
 $rate_{instantaneous at t=4 s}$ = slope of the tangent line at 4 s

$$= \frac{Dy}{Dx} \text{ at } 4 \text{ s}$$

$$= \frac{D[O_2(g)]_{t=4 \text{ s}}}{Dt}$$

$$= \frac{0.05 \text{ mol/L}}{6.6 \text{ s}}$$
rate_{instantaneous at $t=4 \text{ s}} = 8 \times 10^{-3} \text{ mol/(L} \cdot \text{s})$}

Statement: The instantaneous rate of appearance of oxygen gas at 4 s is $8 \cdot 10^{-3}$ mol/(L×s).

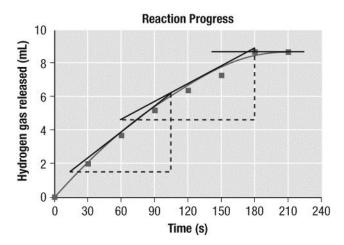


2. (a) Graphs will be curves of best fit and may vary. Sample graph:

(b) Answers may vary, as graphs, tangent lines, and points used in calculations may vary. Sample answer:

Given: Graph in (a)

Required: instantaneous rate of appearance of hydrogen gas at 60 s, 150 s, and 210 s **Analysis:** Draw tangents to the curve at t = 60 s and t = 150 s. Each tangent line is the hypotenuse of a right triangle. Δy is the change in volume, and Δx is the change in time. Substitute these values for Δy and Δx in the slope formula to get the instantaneous rate of appearance of hydrogen gas at 60 s and 150 s. At t = 210 s, $\Delta y = 0$, because at this point, the curve is a horizontal line.



Solution: To calculate the instantaneous rate at t = 60 s, use the points (14 s, 1.5 mL) and (105 s, 6.3 mL) on the tangent to the curve at 60 s.

 $rate_{instantaneous at t = 60 s}$ = slope of the tangent at 60 s

$$= \frac{Dy}{Dx} \text{ at } 60 \text{ s}$$
$$= \frac{6.3 \text{ mL} - 1.5 \text{ mL}}{105 \text{ s} - 14 \text{ s}}$$

rate_{instantaneous at t = 60 s = 0.053 mL/s}

To calculate the instantaneous rate at t = 150 s, use the points (60 s, 4.8 mL) and (180 s, 8.5 mL) on the tangent to the curve at 150 s.

 $rate_{instantaneous at t=150 s}$ = slope of the tangent at 150 s

$$= \frac{Dy}{Dx} \text{ at } 150 \text{ s}$$
$$= \frac{8.5 \text{ mL} - 4.8 \text{ mL}}{180 \text{ s} - 60 \text{ s}}$$

 $rate_{instantaneous at t=150 s} = 0.031 mL/s$

To calculate the instantaneous rate at t = 210 s, use the points (170 s, 8.2 mL) and (220 s, 8.7 mL) on the tangent to the curve at 210 s.

 $rate_{instantaneous at t=210 s}$ = slope of the tangent at 210 s

$$= \frac{Dy}{Dx} \text{ at } 210 \text{ s}$$
$$= \frac{8.7 \text{ mL} - 8.2 \text{ mL}}{220 \text{ s} - 170 \text{ s}}$$
$$= 0.010 \text{ mL/s}$$

rate instantaneous at t = 150 s = 0.010 mL/s

Statement: The instantaneous rate of appearance of hydrogen gas at is 0.053 mL/s at 60 s, 0.021 L/s + 150 mL/s + 0.010 mL/s + 210 mL/s

0.031 mL/s at 150 s, and 0.010 mL/s at 210 s.

(c) The rate of appearance of hydrogen gas is faster at 60 s than at 200 s. This is indicated by the decreasing slope of the graph over time.

Tutorial 4 Practice, page 360

1. Given: $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$ **Required:** stoichiometric rate relationships **Analysis:** Rate relationships are proportional to the stoichiometric relationships in the chemical equation.

Solution:

(a) $H_2(g):NH_3(g) = 3:2$ (b) $N_2(g):H_2(g) = 1:3$ (c) $N_2(g):NH_3(g) = 1:2$ 2. Given: 4 NH₃(g) + 5 O₂(g) \rightarrow 4 NO(g) + 6 H₂O(g); instantaneous rate of consumption of NH₃(g), $\frac{D[NH_3(g)]}{Dt} = 1.8 \times 10^{-2} \text{ mol/(L} \cdot \text{s})$

Required: (a) rate of consumption of $O_2(g)$

(**b**) rate of appearance of $H_2O(g)$

Analysis: Scale the rates by the inverse of their coefficients in the balanced chemical equation. Then, substitute the given rate and solve for the required rates.

Solution:
$$\frac{1}{4} \left(-\frac{D[NH_3(g)]}{Dt} \right) = \frac{1}{5} \left(-\frac{D[O_2(g)]}{Dt} \right) = \frac{1}{6} \left(\frac{D[H_2O(g)]}{Dt} \right)$$

(a) $\frac{1}{5} \left(-\frac{D[O_2(g)]}{Dt} \right) = \frac{1}{4} \left(-\frac{D[NH_3(g)]}{Dt} \right)$
 $-\frac{D[O_2(g)]}{Dt} = \frac{5}{4} (1.8 \times 10^{-2} \text{ mol/(L \cdot s)})$
 $\frac{D[O_2(g)]}{Dt} = 2.3 \times 10^{-2} \text{ mol/(L \cdot s)}$
(b) $\frac{1}{6} \left(\frac{D[H_2O(g)]}{Dt} \right) = \frac{1}{4} \left(-\frac{D[NH_3(g)]}{Dt} \right)$
 $\frac{D[H_2O(g)]}{Dt} = \frac{6}{4} (1.8 \times 10^{-2} \text{ mol/(L \cdot s)})$
 $\frac{D[H_2O(g)]}{Dt} = 2.7 \times 10^{-2} \text{ mol/(L \cdot s)}$

Statement: (a) The rate of consumption of $O_2(g)$ is 2.3 $\checkmark 10^{-2}$ mol/(L×s).

(b) The rate of appearance of H₂O(g) is 2.7 \checkmark 10⁻² mol/(L×s).

3. Given:
$$aA + bB \rightarrow cC$$

 $\frac{1}{a} \left(-\frac{DA}{Dt} \right) = \frac{1}{b} \left(-\frac{DB}{Dt} \right) = \frac{1}{c} \left(\frac{DC}{Dt} \right)$
 $\frac{DA}{Dt} = 0.0080 \text{ mol/(L} \cdot \text{s}); \quad \frac{DB}{Dt} = 0.0120 \text{ mol/(L} \cdot \text{s}); \quad \frac{DC}{Dt} = 0.0160 \text{ mol/(L} \cdot \text{s})$
Required: a, b, c
Analysis: $a:b:c = 0.0080: 0.0120: 0.0160$
Solution: $a:b:c = 0.0080: 0.0120: 0.0160$
 $= \frac{0.0080}{0.004}: \frac{0.0120}{0.004}: \frac{0.0160}{0.004}$
 $a:b:c = 2:3:4$
Statement: The values of the coefficients of A, B, and C are $a = 2, b = 3$, and c

= 4.

6.1-6

Section 6.1 Questions, page 361

1. (a) Given: $[O_2(g)]_{t=0s} = 0.200 \text{ mol/L}; [O_2(g)]_{t=40s} = 0.000 \text{ mol/L}$ **Required:** average rate of disappearance of oxygen gas over the first 40 s **Analysis:** Since the average rate of disappearance of a reactant will be a negative number, use the equation

$$rate_{A} = -\frac{D[A]}{Dt}$$

Solution: $rate_{O_{2}(g)} = -\left(\frac{D[O_{2}(g)]}{Dt}\right)$
$$= -\left(\frac{[O_{2}(g)]_{t=40 \text{ s}} - [O_{2}(g)]_{t=0 \text{ s}}}{40 \text{ s} - 0 \text{ s}}\right)$$
$$= -\left(\frac{0.000 \text{ mol/L} - 0.200 \text{ mol/L}}{40 \text{ s}}\right)$$
$$= -(-5 \times 10^{-3} \text{ mol/(L \cdot s)})$$
$$rate_{O_{2}(g)} = 5 \times 10^{-3} \text{ mol/(L \cdot s)}$$

Statement: The average rate of disappearance of oxygen gas over the first 40 s of the reaction is $5 \cdot 10^{-3}$ mol/(L×s).

2. Given:
$$MnO_{4}^{-}(aq) + 5 Fe^{2+}(aq) + 8 H^{+}(aq) \rightarrow Mn^{2+}(aq) + 5 Fe^{3+}(aq) + 4 H_{2}O(l);$$

instantaneous rate of consumption of MnO₄⁻(aq), $\frac{D[MnO_4^-(aq)]}{Dt} = 4.0 \times 10^{-2} \text{ mol/}(L \cdot s)$

Required: rate of consumption of $Fe^{2+}(aq)$ and $H^{+}(aq)$; rate of appearance of $Mn^{2+}(aq)$, $Fe^{3+}(aq)$, and $H_2O(1)$

Analysis: Scale the rates by the inverse of their coefficients in the balanced chemical equation. Then, substitute the given rate and solve for the required rates.

Solution:
$$-\frac{D[MnO_{4}^{-}(aq)]}{Dt} = \frac{1}{5} \left(-\frac{D[Fe^{2+}(aq)]}{Dt} \right) = \frac{1}{8} \left(-\frac{D[H^{+}(aq)]}{Dt} \right)$$

 $= \frac{D[Mn^{2+}(aq)]}{Dt} = \frac{1}{5} \left(\frac{D[Fe^{3+}(aq)]}{Dt} \right) = \frac{1}{4} \left(\frac{D[H_{2}O(1)]}{Dt} \right)$
Rate of consumption of Fe²⁺(aq): $\frac{1}{5} \left(-\frac{D[Fe^{2+}(aq)]}{Dt} \right) = -\frac{D[MnO_{4}^{-}(aq)]}{Dt}$
 $-\frac{D[Fe^{2+}(aq)]}{Dt} = 5 \left(-\frac{D[MnO_{4}^{-}(aq)]}{Dt} \right)$
 $= 5(4.0 \times 10^{-2} \text{ mol/(L} \cdot \text{s}))$
 $-\frac{D[Fe^{2+}(aq)]}{Dt} = 0.20 \text{ mol/(L} \cdot \text{s})$

Rate of consumption of H⁺(aq):
$$\frac{1}{8} \left(-\frac{D[H^{+}(aq)]}{Dt} \right) = -\frac{D[MnO_{4}^{-}(aq)]}{Dt}$$

 $-\frac{D[H^{+}(aq)]}{Dt} = 8 \left(-\frac{D[MnO_{4}^{-}(aq)]}{Dt} \right)$
 $= 8(4.0 \times 10^{-2} \text{ mol/(L \cdot s)})$
 $-\frac{D[H^{+}(aq)]}{Dt} = 0.32 \text{ mol/(L \cdot s)}$
Rate of appearance of Mn²⁺(aq): $\frac{D[Mn^{2+}(aq)]}{Dt} = -\frac{D[MnO_{4}^{-}(aq)]}{Dt}$
 $\frac{D[Mn^{2+}(aq)]}{Dt} = 4.0 \times 10^{-2} \text{ mol/(L \cdot s)}$
Rate of appearance of Fe³⁺(aq): $\frac{1}{5} \left(\frac{D[Fe^{3+}(aq)]}{Dt} \right) = -\frac{D[MnO_{4}^{-}(aq)]}{Dt}$
 $\frac{D[Fe^{3+}(aq)]}{Dt} = 5 \left(-\frac{D[MnO_{4}^{-}(aq)]}{Dt} \right)$
 $= 5(4.0 \times 10^{-2} \text{ mol/(L \cdot s)})$
Rate of appearance of H₂O(1): $\frac{1}{4} \left(\frac{D[H_{2}O(1)]}{Dt} \right) = -\frac{D[MnO_{4}^{-}(aq)]}{Dt}$
 $\frac{D[Fe^{3+}(aq)]}{Dt} = 4 \left(-\frac{D[MnO_{4}^{-}(aq)]}{Dt} \right)$
 $= 4(4.0 \times 10^{-2} \text{ mol/(L \cdot s)})$
 $\frac{D[H_{2}O(1)]}{Dt} = 0.16 \text{ mol/(L \cdot s)}, \text{ and of H+(aq),}$
 $0.32 \text{ mol/(L × s)}. \text{ The rate of appearance of Mn2+(aq) is 0.040 \text{ mol/(L × s)}; of Fe3+(aq),}$

 $0.20 \text{ mol/(L} \times s)$; and of H₂O(1), 0.16 mol/(L \times s).

3. (a) Given: $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$; instantaneous rate of consumption of NH₃(g) at 10 s is 2.0 $(10^{-2} \text{ mol/(L \times s)})$

Required: (i) rate of consumption of oxygen gas at 10 s

(ii) rate of appearance of water vapour at 10 s

Analysis: Scale the rates by the inverse of their coefficients in the balanced chemical equation. Then, substitute the given rate and solve for the required rates.

Solution:
$$4 \text{ NH}_{3}(g) + 5 \text{ O}_{2}(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_{2}\text{O}(g)$$

$$\frac{1}{4} \left(-\frac{\text{D}[\text{NH}_{3}(g)]}{\text{D}t} \right) = \frac{1}{5} \left(-\frac{\text{D}[\text{O}_{2}(g)]}{\text{D}t} \right) = \frac{1}{6} \left(\frac{\text{D}[\text{H}_{2}\text{O}(g)]}{\text{D}t} \right)$$
(i) $\frac{1}{5} \left(-\frac{\text{D}[\text{O}_{2}(g)]}{\text{D}t} \right) = \frac{1}{4} \left(-\frac{\text{D}[\text{NH}_{3}(g)]}{\text{D}t} \right)$
 $-\frac{\text{D}[\text{O}_{2}(g)]}{\text{D}t} = \frac{5}{4} (2.0 \times 10^{-2} \text{ mol/(L} \cdot \text{s}))$
 $-\frac{\text{D}[\text{O}_{2}(g)]}{\text{D}t} = 2.5 \times 10^{-2} \text{ mol/(L} \cdot \text{s})$
(ii) $\frac{1}{6} \left(\frac{\text{D}[\text{H}_{2}\text{O}(g)]}{\text{D}t} \right) = \frac{1}{4} \left(-\frac{\text{D}[\text{NH}_{3}(g)]}{\text{D}t} \right)$
 $\frac{\text{D}[\text{H}_{2}\text{O}(g)]}{\text{D}t} = \frac{6}{4} (2.0 \times 10^{-2} \text{ mol/(L} \cdot \text{s}))$
 $\frac{\text{D}[\text{H}_{2}\text{O}(g)]}{\text{D}t} = 3.0 \times 10^{-2} \text{ mol/(L} \cdot \text{s})$

Statement: (i) The rate of consumption of oxygen gas at 10 s is $2.5 \cdot 10^{-2}$ mol/(L×s).

(ii) The rate of appearance of water vapour at 10 s is $3.0 \cdot 10^{-2}$ mol/(L×s).

(b) The instantaneous rates of consumption of ammonia gas and appearance of nitrogen monoxide gas are related by their stoichiometric ratios in the chemical reaction.

4. (a) Given: $2 \operatorname{NO}(g) + O_2(g) \rightarrow 2 \operatorname{NO}_2(g)$ $\frac{\mathsf{D}[\mathsf{O}_2(\mathsf{g})]}{\mathsf{D}t} = -2.0 \times 10^{-3} \text{ mol/(L} \cdot \text{s})$

Required: rate of the reaction expressed with respect to nitrogen dioxide gas formation; rate of formation of nitrogen dioxide gas

Analysis: The expression for the reaction rate in terms of NO₂(g) formation is

rate = $\frac{D[NO_2(g)]}{Dt}$. Scale the rate by the inverse of its coefficient in the balanced chemical

equation. Then, substitute the given rate and solve for the required rate.

Solution: Step 1.
$$\frac{1}{2} \left(\frac{D[NO_2(g)]}{Dt} \right) = -\frac{D[O_2(g)]}{Dt}$$
$$\frac{D[NO_2(g)]}{Dt} = 2 \left(-\frac{D[O_2(g)]}{Dt} \right)$$
$$= 2(2.0 \times 10^{-3} \text{ mol/(L} \cdot \text{s}))$$
$$\frac{D[NO_2(g)]}{Dt} = 4.0 \times 10^{-3} \text{ mol/(L} \cdot \text{s})$$

Statement: The expression for the reaction rate in terms of nitrogen dioxide formation is rate = $\frac{D[NO_2(g)]}{Dt}$, and the rate of NO₂(g) formation is 4.0 10^{-2} mol/(L×s).

(b) The two reaction rates have different signs because oxygen gas is being consumed and nitrogen dioxide gas is being formed. Since the concentration of a reactant decreases over time, $\Delta[O_2(g)]$ is a negative quantity, and since the concentration of a product increases with reaction progress, $\Delta[NO_2(g)]$ is positive.

5. (a) In general, the reaction of acid with carbonate compound yields water, carbon dioxide, and an ionic compound.

 $H_2SO_4(aq) + 2 \text{ NaHCO}_3(aq) \rightarrow 2 H_2O(l) + CO_2(g) + Na_2SO_4(aq)$

(b) Given: $H_2SO_4(aq) + 2 \text{ NaHCO}_3(aq) \rightarrow Na_2SO_4(aq) + 2 CO_2(g) + 2 H_2O(l);$ 0.038 mol NaHCO₃ reacts in 20 s

Required: (i) grams of sodium hydrogen carbonate consumed per second; (ii) moles of sulfuric acid consumed per second; (iii) moles of carbon dioxide gas formed per second

Analysis: Since the change in mass for a time interval is given, rather than the change concentration, use the following equation:

rate = $\frac{\text{amount reacted / produced}}{\text{time interval}}$

Scale the rates by the inverse of their coefficients in the balanced chemical equation.

rate of consumption of H₂SO₄(aq) =
$$\frac{1}{2}$$
(rate of consumption of NaHCO₃(aq))
= $\frac{1}{2}$ (rate of formation of CO₂(g))

Then, substitute the given rate and solve for the required rates.

For (i), first convert the amount 0.038 mol NaHCO₃ to mass in grams:

 $M_{\text{NaHCO}_3} = M_{\text{Na}} + M_{\text{H}} + M_{\text{C}} + 3M_{\text{O}}$ = 22.99 g/mol + 1.01 g/mol + 12.01 g/mol + 3(16.00 g/mol) $M_{\text{NaHCO}_3} = 84.01 \text{ g/mol}$ $m_{\text{NaHCO}_3} = (0.038 \text{ prof}) \left(\frac{84.01 \text{ g}}{1.00 \text{ prof}} \right)$

 $m_{\text{NaHCO}_{2}} = 3.192 \text{ g}$ (two extra digits carried)

Solution: (i) rate of consumption of NaHCO₃(aq) = $\frac{\text{amount NaHCO}_3(\text{aq}) \text{ reacted}}{Dt}$ = $\frac{3.192 \text{ g}}{20 \text{ s}}$

rate of consumption of NaHCO₃(aq) = 2×10^{-1} g/s

(ii) rate of consumption of H₂SO₄(aq) = $\frac{1}{2}$ (rate of consumption of NaHCO₃(aq)) = $\frac{1}{2} \left(\frac{\text{amount NaHCO}_3(\text{aq}) \text{ reacted}}{\text{D}t} \right)$ = $\frac{1}{2} \left(\frac{0.038 \text{ mol}}{20 \text{ s}} \right)$

rate of consumption of H₂SO₄(aq) = 1 × 10⁻³ mol / s (iii) $\frac{1}{2}$ (rate of formation of CO₂(aq)) = $\frac{1}{2}$ (rate of consumption of NaHCO₃(aq)) = $\frac{0.038 \text{ mol}}{20 \text{ s}}$

rate of formation of $CO_2(aq) = 2 \cdot 10^{-3} mol / s$

Statement: In this reaction, (i) $2 \cdot 10^{-1}$ g of sodium hydrogen carbonate is consumed per second; (ii) $1 \cdot 10^{-3}$ mol sulfuric acid is consumed per second; and, (iii) $2 \cdot 10^{-3}$ mol of carbon dioxide gas is formed per second.