Section 8.6: Acid–Base Properties of Salt Solutions Tutorial 1 Practice, page 534

1. Given: $[NaCHO_2(aq)] = 0.35 \text{ mol/L}; K_a = 1.8 \times 10^{-4}$ **Required:** pH

Analysis:

CHO ₂ ⁻ (aq)	+ $H_2O(l) \implies$	$HCHO_2(aq) +$	OH ⁻ (aq)
0.35	_	0	0
- <i>x</i>	_	+x	+x
0.35 - x	_	x	x

$$K_{b} = \frac{K_{w}}{K_{a}}$$

$$K_{b} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-4}}$$

$$K_{b} = 5.555 \times 10^{-11} (2 \text{ extra digits carried})$$

$$K_{b} = \frac{[\text{HCHO}_{2}(aq))][\text{OH}^{-}(aq)]}{[\text{CHO}_{2}^{-}(aq)]}$$
Solution: $5.555 \times 10^{-11} = \frac{(x)(x)}{(0.35 - x)}$
 $5.555 \times 10^{-11} \approx \frac{(x)(x)}{0.35}$

$$x^{2} \approx 1.943 \times 10^{-11}$$

$$x = [\text{OH}^{-}(aq)]$$

$$\approx 4.408 \times 10^{-6} \text{ mol/L}$$

$$p\text{OH} = -\log(4.408 \times 10^{-6})$$

$$p\text{OH} = 5.356$$

$$p\text{H} = 14.000 - 5.356$$

$$p\text{H} = 8.64$$
2. Given: [NaClO(aq)] = 0.85 mol/L; K_{a} = 3.5 \times 10^{-8}
Required: pH
Analysis:

ClO ⁻ (aq)	+ $H_2O(l) \rightleftharpoons$	HClO (aq) +	OH ⁻ (aq)
0.85	_	0	0
-x	_	+x	+x
0.85 - x	_	x	x

$$K_{b} = \frac{K_{w}}{K_{a}}$$

$$K_{b} = \frac{1 \times 10^{-14}}{3.5 \times 10^{-8}}$$

$$K_{b} = 2.86 \times 10^{-7}$$

$$K_{b} = \frac{[\text{HCIO}(\text{aq}))][\text{OH}^{-}(\text{aq})]}{[\text{CIO}^{-}(\text{aq})]}$$
Solution: 2.86 × 10⁻⁷ = $\frac{(x)(x)}{(0.85 - x)}$
2.86 × 10⁻⁷ ≈ $\frac{(x)(x)}{0.85}$

$$x^{2} \approx 2.431 \times 10^{-7}$$

$$x = [\text{OH}^{-}(\text{aq})]$$
≈ 4.9305 × 10⁻⁴ mol/L
pOH = $-\log(4.9305 \times 10^{-4})$
pOH = 14.0 - 3.307
pH = 14.0 - 3.307
pH = 10.69

Tutorial 2 Practice, page 536

1. Given: $[NH_4Cl(aq)] = 0.525 \text{ mol/L}; K_b = 1.8 \times 10^{-5}$ **Required:** pH **Analysis:**

NH4 ⁺ (aq)	\implies NH ₃ (aq) +	$\mathrm{H}^{+}(\mathrm{aq})$
0.525	0	0
-x	+x	+x
0.525 - x	x x	x

$$K_{a} = \frac{K_{w}}{K_{b}}$$

$$K_{a} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}$$

$$K_{a} = 5.555 \times 10^{-10} (2 \text{ extra digits carried})$$

$$K_{a} = \frac{[\text{NH}_{3}(\text{aq}))][\text{H}^{+}(\text{aq})]}{[\text{NH}_{4}^{+}(\text{aq})]}$$

Solution:
$$5.555 \times 10^{-10} = \frac{(x)(x)}{(0.525 - x)}$$

 $5.555 \times 10^{-10} \approx \frac{(x)(x)}{0.525}$
 $x \approx 2.91 \times 10^{-10}$
 $x = [H^+ (aq)]$
 $\approx 1.71 \times 10^{-5} \text{ mol/L}$
pH = $-\log(1.71 \times 10^{-5})$
pH = 4.77

2. Given: $[DCl(aq)] = 0.0250 \text{ mol/L}; K_b = 1.62 \times 10^{-6}$ Required: pH Analysis:

D ⁺ (aq) +	$H_2O(l)$	→ DOH (aq) +	H ⁺ (aq)
0.0250	_	0	0
-x	_	+x	+x
0.0250 - x	r –	X	x

$$K_{a} = \frac{K_{w}}{K_{b}}$$

$$K_{a} = \frac{1.0 \times 10^{-14}}{1.62 \times 10^{-6}}$$

$$K_{a} = 6.17 \times 10^{-9}$$

$$K_{a} = \frac{[\text{DOH}(aq))][\text{H}^{+}(aq)]}{[\text{D}^{+}(aq)]}$$
Solution: $6.17 \times 10^{-9} = \frac{(x)(x)}{(0.0250 - x)}$
 $6.17 \times 10^{-9} \approx \frac{(x)(x)}{0.0250}$

$$x^{2} \approx 1.54 \times 10^{-10}$$

$$x = [\text{H}^{+}(aq)]$$

$$\approx 1.24 \times 10^{-5} \text{ mol/L}$$
pH = $-\log(1.24 \times 10^{-5})$

Tutorial 3 Practice, page 538

1. The solution will be basic because the metal oxide will react with water to form hydroxide ions:

 $CuO(aq) + 2 H_2O(l) \rightleftharpoons Cu^{2+}(aq) + 2 OH^{-}(aq)$

2. The solution will be acidic. NO_2 is a non-metal oxide. Non-metallic oxides increase the concentration of hydrogen ions in water, so the solution will be acidic.

Section 8.6 Questions, page 539

2. (a) The pH will be greater than 7 because the sulfite ion is the conjugate base of a weak (HSO_3^{-}) . The sodium ion is too weak of a base to react with water to form hydroxide ions.

(b) The pH will be less than 7 because the ammonium ion is a weak acid and the methanoate ion is a weak base. This solution is predicted to be acidic because the K_a of the ammonium ion is greater than the K_b of the methanoate ion.

(c) The pH will be 7 because neither the magnesium nor sulfate will hydrolyze.

3.

Type of salt	Examples	Comment	pH of solution
Cation of a Group 1	KCl(aq),	Neither of the ions	neutral
or Group 2 element,	NaCl(aq),	acts as an acid or a	
other than Be; anion	NaNO ₃ (aq)	base	
is from strong acid			
Cation of a Group 1	$NaC_2H_3O_2(aq),$	Anion acts as a	basic
or Group 2 element,	KCN(aq),	base; cation has no	
other than Be; anion	NaF(aq)	effect on pH	
is from weak acid			
Cation is conjugate	NH ₄ Cl(aq),	Cation acts as an	acidic
acid of weak base;	NH ₄ NO ₃ (aq)	acid; anion has no	
anion is from strong		effect on pH	
acid			
Cation is conjugate	$NH_4C_2H_3O_2(aq),$	Cation acts as an	acidic if <i>K</i> a > <i>K</i> b
acid of weak base;	NH ₄ CN(aq)	acid; anion acts as a	basic if $Kb > Ka$
anion is conjugate		base	neutral if $Ka = Kb$
base of weak acid			
Cation is highly	$Al(NO_3)_3(aq),$	Hydrated cation acts	acidic
charged metal ion;	FeCl ₃ (aq)	as an acid; anion has	
anion is from strong		no effect on pH	
acid			

4. (a) Given: $[NH_4NO_3(aq)] = 0.30 \text{ mol/L}; K_a = 5.8 \times 10^{-10}$ Required: pH Analysis:

$\operatorname{NH}_4^+(\operatorname{aq}) \rightleftharpoons$	NH ₃ (aq) +	H ⁺ (aq)
0.30	0	0
- <i>x</i>	+x	+x
0.30 - x	x	x

$$K_{a} = 5.8 \times 10^{-10}$$

$$K_{a} = \frac{[NH_{3}(aq))][H^{+}(aq)]}{[NH_{4}^{+}(aq)]}$$
Solution: $5.8 \times 10^{-10} = \frac{(x)(x)}{(0.30 - x)}$
 $5.8 \times 10^{-10} \approx \frac{(x)(x)}{0.30}$
 $x^{2} \approx 1.74 \times 10^{-10}$
 $x = [H^{+}(aq)]$
 $\approx 1.319 \times 10^{-5} \text{ mol/L}$
pH = $-\log(1.319 \times 10^{-5})$
pH = 4.88

(b) pH = 7.00 because it is the salt of a strong acid and a strong base. (c) pH = 7.00 because it is the salt of a strong acid and a strong base. (d) Given: [NH₄HSO₄(aq)] = 2.61 mol/L; $K_b = 1.8 \times 10^{-5}$

Required: pH

Analysis:

HSO ₄ (aq)	+ H ₂ O(aq)	\implies SO ₄ ²⁻ (aq)	+ $H^{+}(aq)$
2.61		0	0
-x		+x	+x
2.61 - x		x	x

$$K_{a} = 1.2 \times 10^{-2}$$
$$K_{a} = \frac{[SO_{4}^{-}(aq)][H^{+}(aq)]}{[HSO_{4}^{-2}(aq)]}$$

Solution:

$$1.2 \times 10^{-2} = \frac{(x)(x)}{(2.61 - x)}$$

$$1.2 \times 10^{-2}(2.61 - x) = x^{2}$$

$$0 = x^{2} + (0.012)x - 0.03132$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-0.012 \pm \sqrt{(0.012)^{2} + 4(0.0313)}}{2}$$

$$= 0.171$$

$$x = [H^{+} (aq)]$$

$$= 0.171 \text{ mol/L}$$
pH = -log(0.171)
pH = 0.767

(e) Given: $[NaC_2H_3O_2(aq)] = 2.80 \text{ mol/L}; K_a = 1.8 \times 10^{-5}$ Required: pH Analysis:

$C_2H_3O_2^{-}(aq)$	+ H ₂ O(l) =	$\longrightarrow \mathrm{HC}_{2}\mathrm{H}_{3}\mathrm{O}_{2}\ (\mathrm{aq})$	+ OH ⁻ (aq)
2.80	_	0	0
-x	_	+x	+x
2.80 - x	_	x	x

$$K_{b} = \frac{K_{w}}{K_{a}}$$

$$K_{b} = \frac{1 \times 10^{-14}}{1.8 \times 10^{-5}}$$

$$K_{b} = 5.55 \times 10^{-10}$$

$$K_{b} = \frac{[\text{HC}_{2}\text{H}_{3}\text{O}_{2}(\text{aq}))][\text{OH}^{-}(\text{aq})]}{[\text{C}_{2}\text{H}_{3}\text{O}_{2}^{-}(\text{aq})]}$$
Solution: $5.55 \times 10^{-10} = \frac{(x)(x)}{(2.80 - x)}$
 $5.55 \times 10^{-10} \approx \frac{(x)(x)}{2.80}$
 $x^{2} \approx 1.554 \times 10^{-9}$
 $x = [\text{OH}^{-}(\text{aq})]$
 $\approx 3.92 \times 10^{-5} \text{ mol/L}$
pOH = $-\log(3.92 \times 10^{-5})$
pOH = 4.40
pH = $14.0 - 4.40$
pH = 9.60

(f) Given: $[NaClO(aq)] = 0.91 \text{ mol/L}; K_a = 3.5 \times 10^{-8}$ Required: pH Analysis:

ClO ⁻ (aq) +	- H ₂ O(l)	HCIO (aq)	+ OH ⁻ (aq)
0.91	_	0	0
-x	_	+x	+x
0.91 - x	_	x	x

$$K_{b} = \frac{K_{w}}{K_{a}}$$

$$K_{b} = \frac{1 \times 10^{-14}}{3.5 \times 10^{-8}}$$

$$K_{b} = 2.86 \times 10^{-7}$$

$$K_{b} = \frac{[\text{HClO}(\text{aq}))][\text{OH}^{-}(\text{aq})]}{[\text{ClO}^{-}(\text{aq})]}$$
Solution: 2.86 × 10⁻⁷ = $\frac{(x)(x)}{(0.91 - x)}$
2.86 × 10⁻⁷ ≈ $\frac{(x)(x)}{0.91}$

$$x^{2} \approx 2.602 \times 10^{-7}$$

$$x = [\text{OH}^{-}(\text{aq})]$$
≈ 5.10 × 10⁻⁴ mol/L
pOH = -log(5.10 × 10⁻⁴)
pOH = 3.29
pH = 14.0 - 3.29
pH = 10.71

5. (a) Given: $[C_6H_5NH_3Cl(aq)] = 0.10 \text{ mol/L}; K_b = 4.1 \times 10^{-10}$ Required: pH Analysis:

$C_6H_5NH_3^+(aq)$	$\implies C_6H_5NH_2$ (aq)	+ $H^{+}(aq)$
0.10	0	0
-x	+x	+x
0.10 - x	x	x

$$K_{a} = \frac{K_{w}}{K_{b}}$$

$$K_{a} = \frac{1 \times 10^{-14}}{4.1 \times 10^{-10}}$$

$$K_{a} = 2.44 \times 10^{-5}$$

$$K_{a} = \frac{[C_{6}H_{5}NH_{2}(aq)][H^{+}(aq)]}{[C_{6}H_{5}NH_{3}^{+}(aq)]}$$
Solution: 2.44 × 10⁻⁴ = $\frac{(x)(x)}{(0.10 - x)}$ 2.44 × 10⁻⁵
2.44 × 10⁻⁴ ≈ $\frac{(x)(x)}{0.10}$ 2.44 × 10⁻⁵
 $x^{2} \approx 2.44 \times 10^{-6}$
 $x = [H^{+}(aq)]$ 1.56 × 10⁻³ mol/L
pH = -log1.56 × 10⁻³)
pH = 2.81

(b) A solution of calcium oxide is basic, and a solution of nitrogen oxide is neutral; so calcium oxide would be better to neutralize aniline hydrochloride.

(c) The oxide is a weak base; so it is easier to control the neutralization with the oxide than with sodium hydroxide. Hydrochloric acid cannot be used to neutralize an acid. 6. (a) $Zn(s) + O_2(g) \rightarrow ZnO(s)$

 $ZnO(s) + H_2O(l) \rightleftharpoons Zn^{2+}(s) + 2 OH^{-}(aq)$

 $\begin{array}{ll} C(s) + O_2(g) & \rightarrow CO_2(g) \\ CO_2(g) & + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq) \end{array}$

 $P_4(s) + 5 O_2(g) \rightarrow P_4O_{10}(s)$ $P_4O_{10}(s) + 6 H_2O(l) \rightleftharpoons 4 H_3PO_4(aq)$ $H_3PO_4(aq) \rightleftharpoons H^+(aq) + H_2PO_4^-(aq)$

$$\begin{array}{l} \operatorname{Fe}(s) + \operatorname{O}_2(g) & \rightarrow \operatorname{Fe}_2\operatorname{O}_3(s) \\ \operatorname{Fe}_2\operatorname{O}_3(s) + 3 \operatorname{H}_2\operatorname{O}(l) \rightleftharpoons \operatorname{Fe}^{3+}(\operatorname{aq}) + 6 \operatorname{OH}^-(\operatorname{aq}) \end{array}$$

(b)

Element	Predicted Color
Zn	blue
С	pink
Р	pink
Fe	blue

7. (a) Optimum pH is about 8.2.

(b) Answers may vary. Sample answer: Calcium carbonate and sodium ethanoate could be used because they are a weak base and a weak acid respectively and are not toxic.(c) Answers may vary. Sample answer: pH can change as carbon dioxide is absorbed from the air and as the organism produces compounds that affect pH. The pH can be adjusted by adding acidic or basic substances.