Chapter 9: Introduction of electrochemistry

You will be able to:

- 1 Determine oxidation number
- 2 Identify reduction and oxidation reaction
- 3 Predict spontaneous reaction

Introduction of electro-chemistry

electrochemistry = branch of chemistry
concerned with the conversion of chemical energy
to electrical energy (& vice versa)

- electrochemical reactions involve the transfer
 of electrons from one substance to another
- consider the reaction:

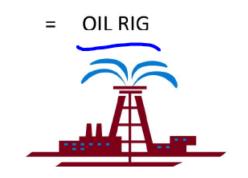
$$2Al(s) + 3CuCl2(aq) \rightarrow 2AlCl3(aq) + 3Cu(s)$$

$$2Al + 3Cu2+ \rightarrow 2Al3+ + 3Cu$$

• electrons are transferred from Al to Cu²⁺

 we can re-write this equation as two separate half-reactions

oxidation half-reaction: Al \rightarrow Al³⁺ + 3e-


reduction half-reaction: $Cu^{2+} + 2e^{-} \rightarrow Cu$

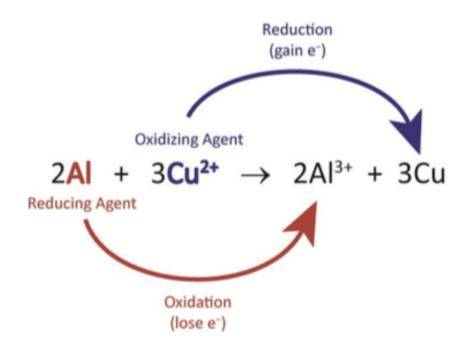
loss of electrons = OXIDATION gain of electrons = REDUCTION

I LOR DGRO

Oxidation Is Losing e⁻ Reduction Is Gaining e⁻

• when a substance becomes **oxidized** it **becomes more positively charged** because it is losing electrons (which are negatively charged)

$$Zn \rightarrow Zn^{2+} + 2e$$
-
 $U^{3+} \rightarrow U^{4+} + e$ -
 $2Cl^{-} \rightarrow Cl_{2} + 2e$ -


 when a substance becomes reduced it becomes more negatively charged because it is gaining electrons

$$Cu^{2+} 2e^{-} \rightarrow Cu$$

$$V^{3+} + e^{-} \rightarrow V^{2+}$$

$$F_{2} + 2e^{-} \rightarrow 2F^{-}$$

- every reduction reaction must be accompanied by an oxidation reaction since the electrons must be transferred somewhere
 - > these are called **REDOX reactions**

The **oxidizing agent** is the reactant reduced (gains e-) during a reaction.

The **reducing agent** is the reactant oxidized (loses e-) during a reaction.

- > Al is the **reducing agent** because it causes Cu²⁺ to become reduced
- > Cu²⁺ is the **oxidizing agent** because it causes Al to become oxidized

Oxidation Number

• oxidation numbers can be used to determine whether an atom has been oxidized or reduced

oxidation number = real or apparent charge an atom or ion has when all of the bonds are assumed to be ionic

Determining oxidation number:

- 1. atoms in elemental form = $\mathbf{0}$
- 2. simple ions = the charge on ion
 - 1. Li⁺, Na⁺, K⁺ and all other **group 1 ions** have an oxidation number of **1+**
 - 2. Ca²⁺, Ba²⁺, Mg²⁺ and all other **group 2** ions have an oxidation number of **2+**
 - 3. F-, Cl-, Br-, I- (halogens) are usually 1-but there are many exceptions, especially in covalent compounds
- 3. **hydrogen** = +1 (except in metallic hydrides such as NaH or BaH₂ where it is 1-)
- 4. oxygen = 2- (in peroxides, H_2O_2 , it is 1-)
- 5. oxidation numbers of other atoms are assigned so that the **sum of the oxidation numbers** (positive & negative) **equals the net charge on the molecule or ion**

Determine the oxidation numbers of each atom for the following:

N:4+ (81)

Cl₂ Cl= O
$$PO_4^{3-}$$
 PO_4^{3-} PO_4

When an atom's oxidation number increases, it has become oxidized, and when an atom's oxidation number decreases, it has become reduced.

oxidation = loss of electrons = increase in oxidation number **reduction** = gain of electrons = decrease in oxidation number

Predicting Spontaneous Reaction

INCREASING TENDENCY TO REDUCE

INCREASING

STRENGTH

AS AN

OXIDIZING AGENT

F

$$F_2 + 2\bar{e} \rightleftharpoons 2F^-$$

$$Ag^+ + e^- \rightleftharpoons Ag$$

$$Cu^{2^+}+2e^{\bar{}} \rightleftarrows Cu$$

$$Zn^{2+} + 2\bar{e} \rightleftharpoons Zn$$

INCREASING TENDENCY TO OXIDIZE

INCREASING STRENGTH AS A REDUCING AGENT

oxidizing agents gain electrons & tend to be cations (+) or non-metals

reducing agents lose electrons & tend to be anions (-) or metals

- stronger oxidizing agents are located on the upper left and have a greater tendency to gain electrons (reduce)
- stronger reducing agents are located on the lower right and have a greater tendency to lose electrons (oxidize)

Consider the half-reaction for Zn and Zn²⁺:

$$Zn^{2+} + 2e^{-} \rightleftarrows Zn$$

Zn²⁺ is an oxidizing agent and will gain electrons:

$$Zn^{2+} + 2e^{-} \rightarrow Zn$$
 (reduction)

Zn is a reducing agent and will lose electrons:

$$Zn \rightarrow Zn^{2+} + 2e$$
- (oxidation)

Spontaneous reactions will occur when there is: an oxidizing agent (reduction) and a reducing agent (oxidation)

and

the oxidizing agent must be above the reducing agent in the table

ex. Which of the following metals - Al, Pb, Cu, Fe and Ag - can be oxidized by Cr³⁺?

ex. Predict whether a spontaneous reaction is expected and the products that would be formed.

a) Pb^{2+} and MnO_2

b) $Cr_2O_7^{2-}$ and Sn^{2+}

ex. Consider the following spontaneous redox reactions:

$$X + Y \rightarrow X^{-} + Y^{+}$$

 $Y^{+} + Z \rightarrow Y + Z^{+}$
 $Z + X \rightarrow Z^{+} + X^{-}$

What is the relative strengths of oxidizing agents (strongest to weakest)?

ex. A solution containing Pd²⁺ reacts spontaneously with Ga to produce Pd and Ga³⁺. However, a solution containing Pd²⁺ does not react with Pt. What are the reducing agents in order of increasing strengths?

Homework

Start Career Planning Final Assignment

Read Read Read Chapter 9.1 and 9.3

Do page 607. #3, 4, 6, 9
page 623. #1 – 8

Final is coming! You guys can do it!