Chapter 2: Analytic Geometry – Part B:

```
Date: Thursday, September 23rd, 2021
Course: MPM2D - Princples of Mathematics
```

Goal: - Centriod of a triangle - Find centriod and prove ratio of 2:1 for all medians intersection midpoint

Review: 1. Assignment #6, Varignon Parallelogram (Project)

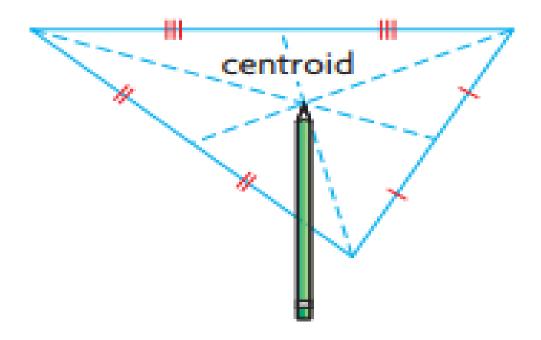
Section 2.6 of Nelson text book.

Centroid: All the medians of a triangle intersect at the same point.

Note: All the median when intersected have a ration of 2:1.

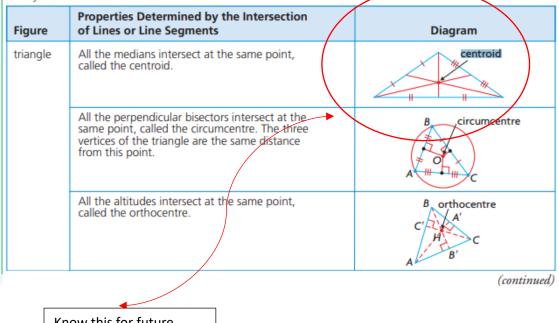
YOU WILL NEED

 grid paper and ruler, or dynamic geometry software



Key Idea

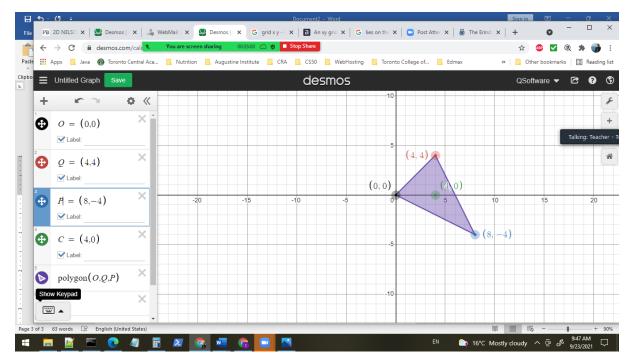
 Some properties of two-dimensional figures are determined by the intersection of lines.



Know this for future examinations.

Example 1: Centroid of a Triangle:

Note 2: The centroid of a triangle in physics, is the point in the triangle that creates a balancing point.



Objective:

- 1. Verify that point C(4,0) is the centroid of $\triangle OPQ$
- 2. Verify that the centroid divides each median in ratio of 2:1.

Logic:

- 1. The point of a triangle is the point of intersection of three medians.
- 2. A point of intersection is a solution or common point, to three linear equations, line segments or in our case, medians.

What is a median? A median is a midpoint of a line segment. A line segment has two end points.

How do we find the point of any two points?

The formula for midpoint is as follows:

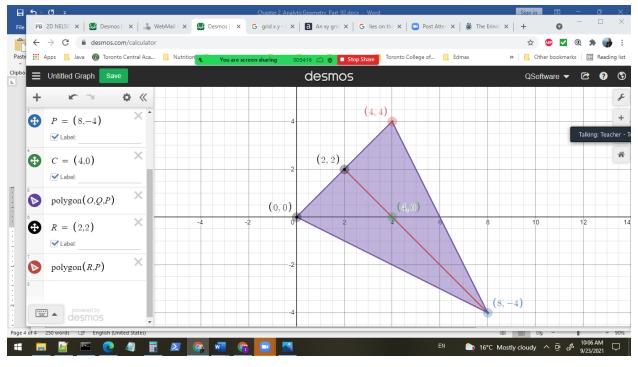
$$M(x, y) = (\frac{x1+x2}{2}, \frac{y1+y2}{2})$$

The median is a line segment from a vertex to the opposite side that splits the line segment of the opposite into two equal parts.

Point P(8, -4), call the midpoint of vertex P, is R.

$$Mid_{pr} = \left(\frac{x1+x2}{2}, \frac{y1+y2}{2}\right)$$
$$O(x_1, y_1) = (0, 0)$$
$$Q(x_2, y_2) = (4, 4)$$

 $\mathsf{R}(\mathsf{x},\mathsf{y}) = \mathsf{Midpoint of OQ} = \left(\frac{x1+x2}{2}, \frac{y1+y2}{2}\right) = \left(\frac{0+4}{2}, \frac{0+4}{2}\right) = \left(\frac{4}{2}, \frac{4}{2}\right) = (2, 2)$



Find the slope of line PR, $M_{pr} = \frac{y^2 - y_1}{x^2 - x_1} = \frac{2 - (-4)}{2 - 8} = \frac{6}{-6} = -1$

What is the equation of line segment or line PR, general formula is:

y = mx + b

m = -1

b is determined by substituting any point on the segment PR to find what b is, which is the y-intercept, that is when x = 0.

2 = (-1)(2) + b 2 = -2 + b 2 + 2 = -2 + 2 + b

4 = b ∴ b = 4.

Substitute m = -1, b = 4. The general equation for M_{pr} is equal to: y = -1x + 4

How do we know that a point is a solution to an equation? The answer is when that point falls on the line.

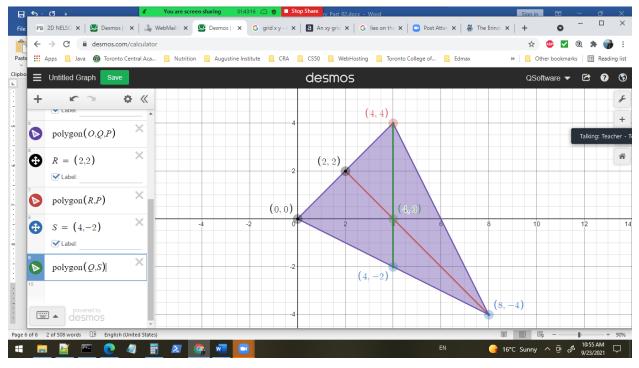
Now substitute point C(4, 0) into the equation for M_{pr} is equal to: y = -1x + 4

Equation 1:	Equation 2: C(4, 0), b = 0	Equation 3: y = 0, C(4, 0)	
PR: : y = -1x + 4	QS: x =4 ; y = mx + b,	OT: y = 0; y = mx + b	
L.S. = 0	L.S. = 0	L.S. = 0	
R.S. = -1x + 4	R.S. = m(0) + 0	R.S. = (0)(4) + 0	
R.S = -1(4) + 4	R.S. = 0	R.S. = 0.	
R.S. = -4 + 4 = 0			
\therefore L.S. = R.S. = 4 \therefore is on line segment PR.	$\therefore \text{ L.S.} = \text{R.S.} = 0$ \therefore is on line segment QS.	 ∴ L.S. = R.S. = 0 ∴ is on line segment OT. 	

Next, the midpoints for sides OP, and PQ is S, T respectively.

 $S(x, y) = Mid_{op} = \left(\frac{x1+x2}{2}, \frac{y1+y2}{2}\right)$ $O(x_1, y_1) = (0, 0)$ $P(x_2, y_2) = (8, -4)$ $S(x,y) = Midpoint of OP = \left(\frac{x1+x2}{2}, \frac{y1+y2}{2}\right) = \left(\frac{0+8}{2}, \frac{0+(-4)}{2}\right) = \left(\frac{8}{2}, \frac{-4}{2}\right) = (4, -2)$

Plot point S(x, y) = (4, -2) onto the triangle in Desmos Graphing Calculator. See new line segment below.



Find the slope of line QS, $M_{qs} = \frac{y^2 - y_1}{x^2 - x_1} = \frac{-2 - 4}{4 - 4} = \frac{-6}{0} = unknown, which is a vertical line.$

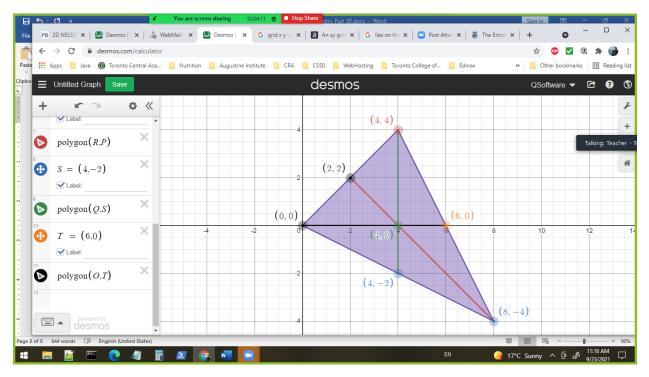
Equation of this line QS is x = 4, we know that there are many values for y, which one values is o.

 \therefore C(4,0) is a point of intersection.

 $P(x_1, y_1) = (8, -4)$ $Q(x_2, y_2) = (4, 4)$

 $T(x, y) = Mid_{pq} = \left(\frac{8+4}{2}, \frac{-4+4}{2}\right) = \left(\frac{12}{2}, \frac{0}{2}\right) = (6, 0)$

Plot T(x, y) = (6, 0) onto our graph.



Equation of line segment QT is y = 0.

So since y = 0, is the x – axis, it would reason that point C(4, 0) is on line y = 0 since they are collinear.

Collinear is when two lines superimpose on top of each other and all the points fall on the same two lines.

Summary table:

Equation 1:	Equation 2: C(4, 0), b = 0	Equation 3: y = 0, C(4, 0)	
PR: : y = -1x + 4	QS: x =4 ; y = mx + b,	OT: y = 0; y = mx + b	
L.S. = 0	L.S. = 0	L.S. = 0	
R.S. = -1x + 4	R.S. = m(0) + 0	R.S. = (0)(4) + 0	
R.S = -1(4) + 4	R.S. = 0	R.S. = 0.	
R.S. = -4 + 4 = 0			
 ∴ L.S. = R.S. = 4 ∴ is on line segment PR. 	∴ L.S. = R.S. = 0 ∴ is on line segment QS.	\therefore L.S. = R.S. = 0 \therefore is on line segment OT.	

 \div C(4,0) is solves all 3 equations, and therefore is the point of intersection of all line segments: PR, QS, OT.

Verify the ration of 2:1 for all medians on either side of the centroid.

Use the length formula to determine the length, and hence the ratio of the lengths.

Length =
$$\sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$$

Line segment: PR	
PC	RC
$P(x_{1}, y_{1}) = (8, -4)$	$R(x_1, y_1) = (2, 2)$
$C(x_2, y_2) = (4, 0)$	$C(x_2, y_2) = (4, 0)$
$L_{pc} = \sqrt{(4-8)^2 + (0-(-4))^2}$	$L_{RC} = \sqrt{(4-2)^2 + (0-(2))^2}$
$L_{pc} = \sqrt{(-4)^2 + (4)^2}$	$L_{RC} = \sqrt{(2)^2 + (-2)^2}$
$L_{pc} = \sqrt{(4)^2 + (4)^2}$	$L_{RC} = \sqrt{(2)^2 + (2)^2}$
$L_{pc} = \sqrt{2 x (4)^2} = \sqrt{(4)^2} x \sqrt{2}$	$L_{\rm RC} = \sqrt{2 \ x \ (2)^2} = \sqrt{(2)^2} \ x \ \sqrt{2}$
$L_{pc} = 4 \times \sqrt{2}$	$L_{\rm RC} = 2 \times \sqrt{2}$
Ratio: 2: 1	
PC is two the length of RC	

Line segment: OT		
Visually		
O(0, 0)		
C(4, 0)		
Т(6, 0)		
OC = (X2 - x1)	TC = (X2 – X1)	
OC = (4 - 0) = TC = (6 - 4)		
4 TC = 2		
Ratio: 2: 1		
OC is two the length of TC		

Line Segment: QS		
Q(4, 4)		
C(4, 0)		
S(4, -2)		
QC = y2 - y1	SC = y2 - y1	
QC = 4 - 0	SC = 0 - (-2)	
QC = 4 SC = 2		
Ratio: 2: 1		
QC is two the length of SC		

 \div C(4,0) divides each of the medians of ΔOPQ into a ratio of 2:1.

Assignment #7:

Prove that medians of a triangle formed by any 3 points, which form a triangle, form a centroid for the triangle.

Prove also the ratio of the medians are in a ratio of 2:1.

Student Name	Point A	Point B	Point C	Verify
Joanna	(-6, 8)	(-12,0)	(12, 0)	Hayden
Hayden	(-9, 13)	(-11, -7)	(9, -6)	Cody
Cody	(-6, 5)	(-14, -11)	(8, -9)	Sherry
Sherry	(-11, - 14)	(4, -13)	(12, 6)	Leon
Wenkang Li	(-3, 1)	(-4, 1)	(5, -1)	Тее
Тее	(-10, 4)	(-10, -12)	(10, -9)	Brian N.
Brian N.	(-9, 6)	(-9, -5)	(12, -11)	Henry T.
Henry T.	(-10, 3)	(-10, -6)	(10, -7)	Roy
Roy	(-9,9)	(-9, -5)	(9, -10)	Kyle
Kyle	(-7,12)	(-10, -11)	(9, -11)	Henry N.
Henry N.	(-4, -2)	(1,-1)	(4,4)	Lavinia
Lavinia	(-5,-6)	(10,-4)	(5,8)	Jason
Jason	(-6,-8)	(5,-10)	(5, 5)	Alex
Alex	(-7, 9)	(-11,1)	(12, 1)	Joanna

Step 1: Table of Points:

Steps:

- 1. Graph the points above using Demos Graphing Calculator
- 2. Find the vertices and medians of each vertex.
- 3. Find the Centroid.
- 4. Prove the ratio of each median as a ratio of 2:1
- 5. Use the AR, BS, CT as the line segments for the medians.