<u>Chapter 4 Factoring Algebraic Expressions:</u> <u>Course: MPM2D – Principles of Mathematics</u>

<u>Creation Date:</u> Friday, October 8th, 2021 <u>Revised Date</u>: Monday, February 12th, 2024

Classification of Polynomials:

You classify a polynomial by its number of terms and its degree.

Degree of the Polynomial: - is the greatest degree of any of its terms. The degree of a term is the sum of the exponents on its variables.

Example:

2abc – is a monomial, because it has one term. It has 3 variables (a, b, c). Each variable has only an exponent of one. Exponent's sum is: $(a^1 + b^1 + c^1) = (1 + 1 + 1) = 3$. The sum of the exponents is of degree 3. This is called a **third-degree** polynomial.

 $7x^2 + x - is a binomial$, because it has two terms. The greatest power of this polynomial is 2 (which is x^2).

 $7k^2m + 15k^3m^2 - 6km^2$ – is a trinomial, because it has 3 terms. The greatest exponent sum is for term $(15k^3m^2) - (3 \text{ for the power in } k, 2 \text{ for the power in } m) = (3 + 2) = 5$. This is a fifth-degree polynomial.

Activity 8: Classification of Polynomials.

Polynomial	Number of Terms	Degree of Polynomial
-3y	1	first-degree
5 + 6a ³	2	third-degree
6x ² + x - 1	3	second-degree
$8a^4b^4 - 6a^3b^2 + 2ab^2$	3	eight-degree
5d³e – 7e	2	fourth-degree
$9 + 5y^5 - 4y^2 + y$	4	fifth-degree
$8a^{3}b^{2} + 9a^{2}b - 6a^{4}b^{2}$	3	Sixth-degree
$10x^7y^2 - 3x^3y^3 + 5x^4y^4$	3	ninth-degree
$6abc - 5a^2bc^2 - 7abc^2$	3	fifth-degree

Question 1: Classify each polynomial in terms and degrees.

Question 2: Add and Subtract Polynomials:

To add, remove the brackets and then collect like terms. To subtract, add the opposite polynomial.

Polynomial	Answer
$(2x^2 + 3x - 5) + (7x^2 + 6x - 2)$	$9x^2 + 9x - 7$.
$= 2x^2 + 3x - 5 + 7x^2 + 6x - 2$	
$= 2x^2 + 7x^2 + 3x + 6x - 2$	
$= 9x^{2} + 9x - 7.$	
$(4a^2 + 5ab - 9b^2) - (7a^2 - 6ab + 2b^2)$	-3a ² + 11ab – 11b ²
$= 4a^2 + 5ab - 9b^2 - 7a^2 + 6ab - 2b^2$	
$= 4a^2 - 7a^2 + 5ab + 6ab - 2b^2$	
$= -3a^2 + 11ab - 11b^2$	
Simply the following:	
(5x + 7) + (2x - 11)	7x - 4
= 5x + 2x + 7 - 11	
= 7x - 4	
(3b-8)-(6b-7)	
=	
$(5x^2 + 6x + 8) + (2x^2 + 5x - 9)$	
$(9y^3 - 7y^2 + 6) - (3y^3 - 5y^2 + 8)$	
$(7a^2 + 3a - 4) + (8a^2 - 2a - 15)$	
$(2c^2 - 3c + 1) - (-c^2 - 3c - 5)$	
$(7x^2 + 3xy - 2y^2) + (8x^2 - xy - y^2)$	
$(4g^2 + gh - 7h^2) - (g^2 - 2gh + 3h^2)$	
$(5ab^2 + 7a - b) + (3ab^2 - 5a + 6b)$	
$(3cd^2 + 2c + 9d) - (2cd^2 + 2c - d)$	
(2x+8) - (6x-7) + (5x-1)	
$(5a2 - b) + (6b - 2a^2) - (b^2 + 7a^2)$	

Distributive Property
2(x + 3)
= 2(x) + 2(3)
= 2x + 6
-a(3a + 5)
= -a(3a) + (-a)(5)
= -3a ² -5a
$2 \cdot (1 + 1)$
2x(x + 1) = $2x(x) + 2x(1)$
= 2x(x) + 2x(1) = $2x^2 + 2x$
$= 2X^{-} + 2X$
3(x + 2)
= 3(x) + 3(2)
= 3x + 6
4(x + 2)
= 4(x) + 2(4)
= 4x + 8
x(x + 3)
= x(x) + 3x
$= x^2 + 3x$
4x(x + 4)
4x(x + 4) = 4x(x) + 4(4)
= 4x(x) + 4(4) = $4x^2 + 16x$

Review: Product of a Monomial and Polynomial using Distributive Property:

Multiply these polynomials	Answer
(x + 1)(x + 2)	$X^2 + 3x + 2$
(x + 2)(x + 4)	
(x + 3)(2x + 1)	
(2x + 3)(x + 1)	
(x + 3)(x + 8)	
(2x + 5)(x + 4)	
(4x + 7)(3x + 1)	
(x + 2)(x + 5)	
(x-2)(x+4)	
(3x + 7)(x - 5)	
Expand and simply	
-2(4x-5)(7x-6)	
2(x + 7)(x - 3) - (4x + 3)(2x - 1)	
Use distributive Property to find the binomial product	
(k – 3)(k – 5)	
(y-3)(y-4)	
(x-2)(x-4)	
(q-4)(q-2)	
(j – 7)(j – 1)	
(p - 9)(p - 3)	
(z - 7x)(z - 8x)	
(b - 3c)(b - 11c)	

Factoring: Determine the Greatest Common Factor (GCF)

12	1, 12, 6, 2, 3, 4	1, 2, 3, 4, <mark>6</mark> , 12,
18	1, 18, 2, 9, 3, 6	1, 2, 3, <mark>6</mark> , 18
Greatest Co	ommon Factor is: 6 for (12,	18)
10		
24		
Greatest Co	ommon Factor is:	
16		
32		
Greatest Co	ommon Factor is:	
8		
14		
Greatest Co	ommon Factor is:	
28		
40		
Greatest Co	ommon Factor is:	
Find the Gr	eatest Common Factors for	•
6 and 9		
25 and 15		
24 and 16		
20 and 28		
36 and 15		
32 and 40		

Date: Friday, February 9th, 2024 **Topic: Factors of Polynomials:**

Special Products: Expand and Simply

	Expanded	Simplified
$(x + 2)^2$	$(x + 2) (x + 2) = x^2 + 2x + 2x + 2^2$	$x^{2} + 4x + 4$
$(x - 6)^2$	$(x-6)(x-6) = x^2 - 6x - 6x + 6^2$	$x^2 - 12x + 36$
$(x - 4)^2$	$(x-4)(x-4) = x^2 - 4x - 4x + 4^2$	X ² – 8x + 16
$(2x + 5)^2$	$(2x + 5) (2x + 5) = 4x^2 + 10x + 10x + 5^2$	4x² + 20x + 25
$(3x - 1)^2$	$(3x - 1)(3x - 1) = 9x^2 - 3x - 3x + 1^2$	$9x^2 - 6x + 1$
$(2x - 5y)^2$	$(2x - 5y) (2x - 5y) = 4x^2 - 10xy - 10yx + (-5y)^2$	$4x^2 - 20xy + 25y^2$
	$= 4x^2 - 10xy - 10yx + 25y^2$	
	$= 4x^2 - 20xy + 25y^2$	

Activity 9: Expand and Simply

	Expanded	Simplified
$(x + 3)^2$		
$(x + 2)^2$		
$(x-6)^2$		
$(x - 4)^2$		
$(2x + 5)^2$		
$(3x - 1)^2$		
$(2x - 5y)^2$		
$(4x - y)^2$		
(a + b) ²		
(a - b)²		
(3a + 2) ²		
(5m – 3) ²		
(4 + 2b) ²		
$(7 - 3z)^2$		
$(2x + 3y)^2$		

Topic 2: Product of a Sum and a Difference of Two Terms:

Example: Expand and Simply

	Expanded	Simplified
(x + 3)(x - 3)	X ² - 3x + 3x - 9	x ² - 9
(2y + 5)(2y - 5)	4y ² - 10y + 10y - 25	4y ² - 25
(x-4)(x+4)	$X^2 + 4x - 4x - 16$	X ² - 16
(3k – 7)(3k + 7)	9k ² + 21k - 21k - 49	9k ² - 49
In general:		
(a + b)(a – b)		
$=a^2-ab+ba-b^2$	2	
$= a^2 - b^2$		
$a^2 - b^2 = (a + b)(a + b)$		
Factor These term	ns below:	
Difference of	Factor the squares	Proof
Squares		Expand the terms.
x ² - 4	$x^2 - 2^2 = (x + 2)(x - 2)$	$x^2 + 2x - 2x - 4 = x^2 - 4$
x ² - 9		
4x ² - 1	$(2x)^2 - 1^2 = (2x + 1)(2x - 1)$	
9x ² - 16		
$4x^2 - 9y^2$		
$4x^2 - 3y^2$ $9m^2 - 4n^2$		

Topic 3: Perfect Square trinomials (3 terms)

Example: Expand and Simply

	Expanded	Simplified
(x + 3) ²	(x + 3) (x + 3)	
	$= x^{2} + 3x + 3x + 9$	
	$= x^{2} + 6x + 9$	
(x + 2) ²	(x + 2) (x + 2)	
	$= x^{2} + 2x + 2x + 4$	
	$= x^2 + 4x + 4$	
(x + 4)		
Generic Form	(a + b) (a + b)	$= a^2 + (2)ab + b^2$
(a + b) ²	$= a^2 + ab + ba + b^2$	$= a^2 + 2ab + b^2$
	$= a^2 + 2ab + b^2$	
$(x - 6)^2$	(x-6)(x-6)	
	$= x^2 - 6x - 6x + 36$	
	$= x^2 - (2)(6x) + 36$	
	$= x^2 - 12x + 36$	
$(2x - 4)^2$	(2x-4)(2x-4)	
	$=4x^2 - 8x - 8x + 16$	
	$=4x^2 - 16x + 16$	
	Quickly:	
	$=(2x)^{2}-(2)(2x)(4)+(-4)(-4)$	
	$=4x^2 - 16x + 16$	
<u>Generic Form</u>	(a -b)(a -b)	$= a^2 - (2)ab + b^2$
(a - b)²	$= a^2 - ab - ba + b^2$	$= a^2 - 2ab + b^2$
	$= a^2 - 2ab + b^2$	
In general, Daufa	et Courses (Trinemiste)	
-	ct Squares (Trinomials)	
$(a + b)^2$ = $a^2 + 2ab + b^2$		
= a ⁻ + 2ab + b ²		
(a b)2		
(a - b) ² = a ² - 2ab + b ²		
= a 2ab + b ²		

Topic 4: Factoring Quadratic Expression in form of $x^2 + bx + c$, a = 1

Quadratic questions: (3 forms)

- 1. $y = a(x h)^2 + k$
- 2. y = a(x r)(x s)
- 3. $y = ax^2 + bx + c$ studying now, where a = 1

	Expanded	Equate		
General Form: y = ax ² + bx + c, a = 1 y = x ² + bx + c				
y = a(x + r)(x + s), a = 1 y = (x + r)(x + s)	= x^{2} + rx + sx + rs = x^{2} + (r + s)x + rs	$x^{2} + bx + c = x^{2} + (r + s)x + rs$ b = (r + s) $c = (r \times s)$		
In general: Transition for $x^2 + bx + c = x^2 + (r + s)x - c$				
b = (r + s) c = (r x s)				
Examples of factor r, s, w	here r, s are only integer	S.		
Factor, if possible		FactorsProduct cSum(r, s)c= r x sb = r+s		
x ² + 7x + 12	b = 7, c = 12	1, 12 12 13 2, 6 12 8 3, 4 12 7		
	(x + r)(x + s) = (x + 3)(x + 4) = x ² + 4x + 3x + 12 = x ² + 7x + 12			
$x^2 + 4x + 6$				
x ² - 29x + 28				
x ² + 3x - 28				

x ² - 4x - 21	b = -4, c = -21	Factors	Product (c)	Sum (b)
		(r, s)	c=rxs	b = r+s
	r, s = (3, -7)			
	b = (r + s)			
	= (x + 3)(x - 7)	-1, 21	-21	20
	= (x - 7) (x + 3)			
		-3, 7	-21	4
	Proof:			
	$= x^2 - 7x + 3x - 21$	1, -21	-21	20
	$= x^2 - 4x - 21$			
		3, -7	-21	-4

Date: Monday, February 12th, 2024

Goal:

Topic 5: Factoring Quadratic Expression in form of $ax^2 + bx + c$, $a \neq 1$, but a, b, c are integers

Example:

Example	Factors: Products and sums			
General form: $ax^2 + bx + c$ $3x^2 + 8x + 4$	Factors Production of (a x c), factors of 12	uct Sum (b)	$= 3x^{2} + 8x + 4$ = 3x ² + 6x + 2x + 4 = 3x(x + 2) + 2(x + 2) = (x + 2)(3x + 2) = (3x + 2) (x + 2)
a = 3, b = 8, c = 4 need to find two integers whose product is a x c = 12, whose sum of two	1, 12 12 2, 6 12 3, 4 12	13 8 7		Expand to prove: = $(3x + 2)(x + 2)$ = $3x^2 + 6x + 2x + 4$ = $3x^2 + 8x + 4$
factors is 8 $6x^2 - 5x + 1$ a = 6 b = -5 c = 1	Factors ($a \times c$) = 6Pro1, 662, 36-1, -66-2, -36	oduct S 7 5 -7 -1	7	$=6x^{2} - 5x + 1$ =6x ² - 2x - 3x + 1 =2x(3x - 1) - (3x - 1) =(3x - 1)(2x - 1) Expand to prove: =(3x - 1)(2x - 1) =6x ² - 3x - 2x + 1 =6x ² - 5x + 1
$16x^{2} + 26x - 12$ Remove common factor first (GCF) = 2 =2(8x ² + 13x - 6) a=8 b=13 c= -6	Factors (a x c) = -48 -1, 48 -2, 24 -3, 16 -4, 12 -6, 8 1, -48	Product -48 -48 -48 -48 -48 -48 -48	Sum b = 13 47 22 13 8 2 -47	$=2(8x^{2} + 13x - 6)$ $=2[8x^{2} + 16x - 3x - 6]$ $=2[8x^{2} - 3x + 16x - 6]$ =2[x(8x - 3) + 2(8x - 3)] =2[(8x - 3)(x + 2)] Expand to prove: =2[(8x - 3)(x + 2)]
a x c = 8 x (-6) = -48	2, -24 3, -16 6, -8	-48 -48 -48	-22 -13 -2	$=2[8x^{2} + 16x - 3x - 6]$ $=2[8x^{2} + 13x - 6]$

Activity 10: Factor these parabolic equations (if possible)

2	
$2x^2 + 5x + 3$	
2^{2} , 7 , 4	
$3x^2 + 7x + 4$	
$6x^2 + 5x + 1$	
0. 1 3. 1 1	
$6x^2 + 11x + 1$	
2 2 . 7 . 5	
$2x^2 + 7x + 5$	
6y ² + 19y + 8	
0y + 15y + 0	
12q ² + 17q + 6	

Summary/Key Concepts:

- 1. Always look for a common factor first when factoring a trinomial
- 2. To factor $ax^2 + bx + c$, find two integers whose product is a x c, and whose sum is b. Then break up the middle term and factor by grouping.
- 3. Note: Not all quadratic expressions of the form $r ax^2 + bx + c$, can be factored over the integers.

Grand Summary of all parabolic forms.

Quadratic Expression	$x^2 + bx + c$	$a^2 - b^2$	$a^{2} + 2ab + b^{2}$ $a^{2} - 2ab + b^{2}$	$ax^2 + bx + c$
Factoring Technique	Find two integers, r and s, with a product of c and a sum of b. Then write: $x^{2} + bx + c$ as (x + r)(x + 2)	Use the difference of squares pattern. $a^2 - b^2$ = (a - b)(a + b)	Use a perfect square trinomial pattern. $a^2 + 2ab + b^2$ = $(a + b)^2$ $a^2 - 2ab + b^2$ = $(a - b)^2$	Find two integers with a product of a x c, and a sum of b. Then break up the middle term and factor by grouping
Example;	$x^{2} + 11x + 18$ b = 11, c = 18, The two integers are: 9 and 2. $x^{2} + 11x + 18$ =(x + 9)(x + 2)	$100x^{2} - 9$ = (10x) ² - (3) ² = (10x - 3)(10x + 3)	$x^{2} + 6x + 9$ = $x^{2} + (2)(3)x + 9$ = $(x + 3)^{2}$ $25x^{2} - 40x + 16$ = $(5x)^{2} - 2(5x)(4) + 4^{2}$ = $(5x - 4)^{2}$	$6x^{2} - 11x - 7$ a = 6, c= -7 a x c = -42, b = -11 The two integers are: 3, -14 = 6x^{2} - 11x - 7 = 6x^{2} + 3x - 14x - 7 = 3x(2x + 1) - 7(2x + 1) = (2x + 1)(3x - 7)