Chapter 6: Quadratic Equations: Date Created: Friday, October 15, 2021 Date Revised: Wednesday, February 14, 2024

Three forms of Quadratic Relations:

1. $y = ax^2 + bx + c$ tandard form

2. $y = a(x - h)^2 + k \leftarrow Vertex Form$

3. $y = a(x - r)(x - s) \leftarrow x$ -intercept form or zero form.

Topic: 1: Determine the Minima and Maxima of a quadratic relation in the form of $y = ax^2 + bx + c$

Also called: Completing of Squares, (x – h)²

Example 1: Convert $y = ax^2 + bx + c$ into $y = a(x - h)^2 + k$

 $y = x^2 + 8x + 5$

Step 1: factor the x out from the first two terms: $x^2 + 8x$

 $y = x^2 + 8x + 5$ y = x(x + 8) + 5

what is $(x + 8)^2 = (x + 8)(x + 8) = x^2 + 8x + 8x + 64)$ \leftarrow $(x + 8)^2$ is too big

What if $(x + 8/2)^2 = (x + 4)^2 = (x + 4)(x + 4) = x^2 + 4x + 4x + 16 = x^2 + 8x + 16$

To keep it balanced from the original equation we need to take away 16. = $(x^2 + 8x)$ = $(x + 4)^2 - 16$

expand

= $(x + 4)^2$ -16 ← brings us closer to completing the square and balancing the equation. = (x + 4)(x + 4) - 16= $x^2 + 8x + 16 - 16$ = $x^2 + 8x$ = x(x + 8) $y = x^2 + 8x + 5$ $y = x^2 + 8x + 5$ $y = x^2 + 8x + 4^2 - 4^2 + 5$

 $y = (x^2 + 8x + 4^2) + 5 - 4^2$

 $y = (x + 4)^2 + 5 - 16$

 $y = (x + 4)^{2} - 11 \quad \Leftarrow \text{ vertex } (x, y) = (h, k) = (-4, -11))$ y = (x - h)^{2} - 11 $\Leftarrow \text{ h is -4 to make it } (x + 4)^{2}$ Desmos Graphing Software to plot both equations.

$y = x^2 + 8x + 5$

$y = (x + 4)^2 - 11$ \leftarrow vertex is at (x, y) = (-4, -11)

Note: Both equations form the same graph.

Example 2: Finding the Minimum and Maximum, where a ≠ 1

 $y = 2x^2 + 12x + 11 \Rightarrow y = a(x - h)^2 + k$

Step 1: Factor the coefficient from first 2 terms.

 $y = 2(x^2 + 6x) + 11$

Step 2: Complete the square of the term inside the brackets.

 $= x^{2} + 6x$ $= x^{2} + 6x + (6/2)^{2} - (6/2)^{2}$ $= x^{2} + 6x + (3)^{2} - (3)^{2}$ $= (x^{2} + 6x + 9) - 9 \qquad \bigstar x^{2} + 6x + 9 = (x + 3)^{2}$ $= (x + 3)^{2} - 9 \qquad \bigstar \text{ substitute into the original equation}$ $y = 2(x^{2} + 6x) + 11$ $y = 2[(x + 3)^{2} - 9] + 11$ $y = 2[(x + 3)^{2}] + 11 + (-9)(2)$

 $y = 2(x + 3)^{2} + 11 - 18$ $y = 2(x + 3)^{2} - 7 \quad \leftarrow \text{ vertex } (x, y) = (h, k) = (-3, -7)$

Plot using Desmos Graphing software.

 $y = 2x^2 + 12x + 11$

$y = 2(x + 3)^2 - 7$

CEDU4U Canada - Cloud Learn X PB 2D NELSON TEXTBOOK.pdf	X Post Attendee - Zoom X	The Erindale Academy	Contraction Desmos Graphing Calculato	+ ~ -	- 0 ×
\leftrightarrow \rightarrow C $$ desmos.com/calculator				ବ ★ 🐵 🔽 ଡ	à 🗯 🎲 E
🔢 Apps 📙 Java 🍘 Toronto Central Aca 📒 Nutrition 📒	Augustine Institute 🧾 CRA 🛄 CS50	📙 WebHosting 📙 Toronto College	e of 📙 Edmax 🛄 Unicode	» 📙 Other bookmarks	Reading list
Untitled Graph	d'	You are screen sharing 015	739 A P Stop Share	Log In or Sign Up	6 9 3
+ • • • • • • •		5		Talking: Teacher - To	ony Pietrang 🦻
$y = 2x^2 + 12x + 11$					+
$y = 2(x+3)^2 - 7$					-
3	-10	-9 (-3, -7)	5		
Cesmos	······································		EN 🥚 18	3°C Sunny ∧ ⊕ Ø	11:31 AM 10/14/2021

Activity 11: Completing the Squares, or Transforming Quadratic equation: $y = ax^2 + bx + c$ into vertex form $y = a(x - h)^2 + k$

<u>Course: MPM2D – Principles of Mathematics.</u> <u>Date Created: Friday, October 15, 2021</u> <u>Modified Date: Friday, February 16th, 2024</u>

Goal/Topic: The Quadratic Formula:

Definition: Roots of an equation.

 The value(s) of the variables that makes an equation true Example: y = x²- x - 12

set y = 0 0 = (x - 4)(x + 3) these are the zeros of the equation. They are also the roots of the equation.

→ Below are the values that make the equation true.

$\mathbf{x} - 4 = 0$	<u>X + 3 = 0</u>
<u>X = 4</u>	<u>X = -3</u>

History:

Quadratic equations that can be factored are simple to solve.

But, what about quadratics that can not be factored.

The Greek mathematicians: - had methods to solve quadratics. Euclid (300 BCE, same as BC) Pythagoras (500 BCE, same as BC)

Hindu: Mathematicians: Brahmagupta (700 AD, same as ACE) Bhaskara (1100 AD, same as ACE)

Helped to develop the Quadratic Formula below:

The roots or zeros	Line of Symmetry
$-b\pm\sqrt{b^2-4ac}$	$x = \frac{-b}{-b}$
x =2a	^ ⁻ 2a

Example: Reason you see: $\pm \sqrt{b^2 - 4ac}$ a² = (-a)(-a) a² = (a)(a)

16 = (-4)(-4) 16 = (4)(4)

Reason you see, ± in front of factor above.

Let's us do a walk through to understand and develop the formula. page 293: McGraw-Hill Ryerson

Example:	Quadratic Formula							
$2x^2 + 5x + 1 = 0$	$ax^2 + bx + c = 0$							
$x^2 + \frac{5}{2}x + \frac{1}{2} = 0$ formula divide by 2	$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$ \bigstar divide formula by a							
$x^{2} + \frac{5}{2}x + (\frac{5}{4})^{2} - (\frac{5}{4})^{2} + \frac{1}{2} = 0$ Complete the square	$x^{2} + \frac{b}{2a}x + (\frac{b}{2a})^{2} - (\frac{b}{2a})^{2} + \frac{c}{a} = 0$							
$(x^{2} + \frac{5}{2}x + (\frac{5}{4})^{2}) - (\frac{5}{4})^{2} + \frac{1}{2} = 0$	$(x^{2} + \frac{b}{2a}x + (\frac{b}{2a})^{2}) - (\frac{b}{2a})^{2} + \frac{c}{a} = 0$							
$(x + (\frac{5}{4}))^2 - (\frac{5}{4})^2 + \frac{1}{2} = 0$ \bigstar using $(a + b)^2$	$(x + (\frac{b}{2a}))^2 - (\frac{b}{2a})^2 + \frac{c}{a} = 0$							
$(x + (\frac{5}{4}))^2 - (\frac{25}{16}) + \frac{8}{16} = 0$ terms	$(x + (\frac{b}{2a}))^2 - \frac{b^2}{4a^2} + \frac{c}{a} = 0$							
	$(x + (\frac{b}{2a}))^2 - \frac{b^2}{4a^2} + \frac{c}{a}(\frac{4a}{4a}) = 0$							
$(x + (\frac{5}{4}))^2 - \frac{17}{16} = 0$ simplified	Simplified $(x + (\frac{b}{2a}))^2 - (\frac{b^2}{4a^2} - \frac{4ac}{4a^2}) = 0$							
	$(x + (\frac{b}{2a}))^2 - (\frac{b^2 - 4ac}{4a^2}) = 0$ Combine factors							
5 . 17 .	$(x + (\frac{b}{2a}))^2 = \frac{b^2 - 4ac}{4a^2}$							
$(x + (\frac{3}{4}))^2 = \frac{17}{16}$ square roots of by sides	Square root both sides:							
$5 \sqrt{17} \sqrt{17}$	$\mathbf{x} + \frac{b}{2a} = \frac{\pm \sqrt{b^2 - 4ac}}{\sqrt{4a^2}}$							
$x + \frac{1}{4} = \pm \sqrt{\frac{1}{16}} \pm \frac{1}{4}$	$\mathbf{x} = -\frac{b}{2a} + \frac{\pm\sqrt{b^2 - 4ac}}{2a}$							
$x = \frac{-5}{4} \pm \frac{\sqrt{17}}{4}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \Leftarrow \text{ solved; proof.}$							

$-5 \pm \sqrt{17}$	
$X = \frac{3 \pm \sqrt{17}}{1}$	
4	

Example 1: Find the real roots of an equation.

a) $2x^2 + 9x + 6 = 0$

a = 2 b = 9 c = 6

Substitute into formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-9 \pm \sqrt{9^2 - 4(2)(6)}}{2(2)}$$
1. $2x^2 + 9x + 6 = 0$
a = 2
b = 9
c = 6
Solve for x:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-9 \pm \sqrt{9^2 - 4(2)(6)}}{2(2)}$$

$$x = \frac{-9 \pm \sqrt{9^2 - 4(2)(6)}}{2(2)}$$

$$x = \frac{-9 \pm \sqrt{33}}{4}$$
The exact roots are:
root 1:
$$x_1 = \frac{-9 \pm \sqrt{33}}{4} \approx -0.81$$
root 2:
$$x_2 = \frac{-9 - \sqrt{33}}{4} \approx -3.69$$

$$X_{s} = \frac{-0.81 + -3.69}{2} = \frac{-4.50}{2} = -2.25$$

Formula for axis of symmetry:
$$X_{s} = \frac{-b}{2a} = \frac{-b}{2a} = \frac{-9}{4} = -2.25$$

Vertex
$$y = 2x^{2} + 9x + 6$$

$$y = f(x) = f(\frac{-9}{4}) = 2x^{2} + 9x + 6$$

$$f(\frac{-9}{4}) = f(\frac{-9}{4}) = 2(\frac{-9}{4})^{2} + 9(\frac{-9}{4}) + 6$$

$$f(\frac{-9}{4}) = 2(\frac{81}{16}) + (\frac{-81}{4}) + 6$$

$$f(\frac{-9}{4}) = (\frac{81}{8}) + (\frac{-162}{8}) + 6$$

$$f(\frac{-9}{4}) = (\frac{81}{8}) + (\frac{-162}{8}) + 6$$

$$f(\frac{-9}{4}) = (\frac{-81}{8}) + 6 = (\frac{-81}{8}) + (\frac{48}{8})$$

$$f(\frac{-9}{4}) = (\frac{-81}{8}) + (\frac{48}{8}) = (\frac{-33}{8}) = -4.125$$

→ C S desmos.com/calculator								*	💩 🔽	D D	💮 👘	lew Chrome	e available	• •
🗅 Al - Artificial Intelli 🗅 Anaconda 🗋	Books 🗅 Course	era 🗅 CR/	A 🗅 CS50	Augustine Ir	nstitute 🗋	Developme	ent Tools [Docker	🗅 Edmax	🗅 Fusemai	>>		All Bookm	narks
Untitled Graph Save			de	smos					[Log In or	Sign Up	6	?	3
r a	¢ «						-6							£
$f(x) = 2x^2 + 9x + 6$	×													+
$f\left(-\frac{9}{4}\right)$	×													ñ
	= -4.125													-
$x = -\frac{9}{7}$	×			(-3.686,0)			(-0.81	14,0)						
4	x = -2.25	-10	-8	-6 -	-4	-2	0	2	4	6	8		10	
	_					/	-2							-
	-						-4							
	_			(-2.25, -	4.125)									
powered by							-6							_

2. $4x^2 - 12x = -9$ rewrite into the form: $ax^2 + bx + c = 0$ $4x^2 - 12x + 9 = -9 + 9$ $4x^2 - 12x + 9 = 0$ a = 4 b = -12 c = 9 Solve for x: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-12 \pm \sqrt{(-12)^2 - 4(4)(9)}}{2(4)}$ $x = \frac{-12 \pm \sqrt{144 - 144}}{2(4)} = \frac{-(-12)}{2(4)} = \frac{3}{2} = 1.50$ $\mathsf{D} = \pm \sqrt{\mathsf{b}^2 - 4\mathsf{ac}} = \pm \sqrt{(-12)^2 - 4(4)(9)} = \sqrt{(-12)^2 - 4(4)(9)}$ $\mathsf{D} = \pm \sqrt{(-12)^2 - 4(4)(9)} = \pm \sqrt{144 - 144} = 0$ The discriminant, D, is zero. This means there is double root, which are the same. \therefore the graphic only touches the x-axis at only one point. Axis of Symmetry: $Xs = \frac{-b}{2a} = \frac{-(-12)}{2(4)} = \frac{3}{2} = 1.50$ Vertex $y = 4x^2 - 12x + 9$ $y = f(\frac{3}{2}) = f(\frac{3}{2}) = 4(\frac{3}{2})^2 - 12(\frac{3}{2}) + 9$ $y = f(\frac{3}{2}) = 4(\frac{3}{2})^2 - 12(\frac{3}{2}) + 9$

$$y = f(\frac{3}{2}) = 4(\frac{3}{2})^2 - 12(\frac{3}{2}) + 9$$
$$y = f(\frac{3}{2}) = 4(\frac{9}{4}) - 12(\frac{3}{2}) + 9$$
$$y = f(\frac{3}{2}) = 4(\frac{9}{4}) - 12(\frac{3}{2}) + 9$$
$$y = f(\frac{3}{2}) = (\frac{18}{2}) - (\frac{36}{2}) + 9$$
$$y = f(\frac{3}{2}) = 9 - 18 + 9 = 0$$
$$vertex(x,y) = ((\frac{3}{2}), 0)$$

Topic: Interpreting Quadratic Equation Roots:

Goal: Determine the number of roots of a quadratic equation, and relate these roots to the corresponding relation.

Quadratic relations may have two, one, or no x-intercepts illustrated by the following examples:

- **1.** $-x^2 + x + 6 = 0$, has two roots
- **2.** $x^2 6x + 9 = 0$, has one root
- **3.** $2x^2 4x + 5 = 0$, has no roots.

Please see page 344 of the Nelson text book.

Case (1)

1. $-x^2 + x + 6 = 0$ a = -1 b = 1 c = 6 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Solve for x: $x = \frac{-1 \pm \sqrt{1^2 - 4(-1)(6)}}{2(-1)}$ $x = \frac{-1 \pm \sqrt{1+24}}{2(-1)}$ $x = \frac{-1 \pm \sqrt{25}}{2(-1)}$ The exact roots are: root 1: $x_1 = \frac{-1 \pm \sqrt{25}}{-2} = \frac{-1+5}{-2} = \frac{-1+5}{-2} = \frac{4}{-2} = -2.0$ root 2: $x_2 = \frac{-1 - \sqrt{25}}{-2} = \frac{-1 - 5}{-2} = \frac{-6}{-2} = \frac{-6}{-2} = 3.0$ $X_{s} = \frac{-2.0 + 3.0}{2} = \frac{1}{2}$ Formula for axis of symmetry:

$$Xs = \frac{-b}{2a} = \frac{-b}{2a} = \frac{-1}{2(-1)} = \frac{1}{2}$$
Vertex

$$y = -x^{2} + x + 6$$

$$y = f(x) = f(\frac{1}{2}) = -x^{2} + x + 6$$

$$f(\frac{1}{2}) = f(\frac{1}{2}) = -x^{2} + x + 6$$

$$f(\frac{1}{2}) = -1(\frac{1}{2})^{2} + (\frac{1}{2}) + 6$$

$$f(\frac{1}{2}) = -(\frac{1}{4}) + (\frac{1}{2}) + 6$$

$$f(\frac{1}{2}) = -(\frac{1}{4}) + (\frac{2}{4}) + 6$$

$$f(\frac{1}{2}) = (\frac{25}{4}) = 6.25$$
Vertex(x, y) = $((\frac{1}{2}), ((\frac{25}{4})) = (0.50, 6.25)$
1. $-x^{2} + x + 6 = 0$, has two roots, that means

1. $-x^2 + x + 6 = 0$, has two roots, that means that the graph will have two x-intercepts, P₁ = (-2, 0), P₂ = (3, 0), with vertex (x, y) = $((\frac{1}{2}), ((\frac{25}{4})) = (0.50, 6.25)$

Case (2)

2. $x^2 - 6x + 9 = 0$ a = 1 b = -6 c = 9 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Solve for x: $x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(9)}}{2(1)}$ $x = \frac{6 \pm \sqrt{36 - 36}}{2(1)}$ $x = \frac{6 \pm \sqrt{0}}{2(1)} = \frac{6}{2} = 3$ $\mathsf{D} = \pm \sqrt{\mathsf{b}^2 - 4\mathsf{ac}} = \pm \sqrt{(-6)^2 - 4(1)(9)} = \sqrt{(-6)^2 - 4(1)(9)}$ $D = \pm \sqrt{36 - 36} = \sqrt{0} = 0$ The discriminant, D, is zero. This means there is double root, which are the same. \therefore the graphic only touches the x-axis at only one point. Formula for axis of symmetry: Xs = $\frac{-b}{2a} = \frac{-b}{2a} = \frac{-(-6)}{2(1)} = \frac{6}{2} = \frac{6}{2} = 3$ Vertex $y = x^2 - 6x + 9$ $y=f(x) = f(3) = (3)^2 - 6(3) + 9$ $f(3) = (3)^2 - 6(3) + 9$ f(3) = 9 - 18 + 9 = 0

<u>Case (3)</u>

3. $2x^{2} - 4x + 5 = 0$ a = 2 b = -4 c = 5 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ Solve for x: $x = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(2)(5)}}{2(2)}$ $x = \frac{4 \pm \sqrt{16 - 40}}{2(1)}$ $x = \frac{4 \pm \sqrt{-24}}{2(1)}$ $D = \pm \sqrt{16 - 40}$ $D = \pm \sqrt{-24}$

The discriminant, D, has a negative square root, $\sqrt{-24}$. This means there is zero roots, for the quadratic equation-4, that is, no solutions.

: the graphic never crosses the x-axis.

Formula for axis of symmetry:

Xs =
$$\frac{-b}{2a} = \frac{-(-4)}{2(2)} = \frac{-(-4)}{2(2)} = \frac{4}{4} = 1$$

Vertex

 $y = 2x^2 - 4x + 5$

 $y=f(x) = f(1) = 2x^2 - 4x + 5$

 $f(1) = 2(1)^2 - 4(1) + 5$

