

**COURSE NAME: MPM2D – Principles of Mathematics (Mid Term Exam)** MPM2D: Mid Term Exam **Student's Name: Instructor Student#: Answer Key Teacher: Antonio Pietrangelo** Time: (3 + 1) Hours – with ESL Due Date: Tuesday, January 30th, 2024 @ 01:30 pm accommodation (EST) /100 Pages: 20 Mark: Thinking/Inquiry/ Communication **Categories** Knowledge/ **Application** Understanding **Problem Solving** Symbol T/I  $\mathbf{C}$ K/U Α 25% Weight 25% 25 % 25 % Level

#### **Overall Expectations:**

Expectations as listed in the Ontario Curriculum course outline for your specific course.

# **Specific Expectations**

#### **Unit 1 - Systems of Linear Equations**

- 1.1 Representing Linear Relations
- 1.2 Solving Linear Equations
- 1.3 Graphically Solving Linear Systems
- 1.4 Solving Linear Systems: Substitution
- 1.5 Equivalent Linear Systems
- 1.6 Solving Linear Systems: Elimination
- 1.7 Exploring Linear Systems

# **Chapter 2: Analytic Geometry: Line Segments and Circles**

- 2.1 Midpoint of a Line Segment
- 2.2 Length of a Line Segment
- 2.3 Equation of a Circle
- 2.4 Classifying Figures on a Coordinate Grid
- 2.5 Verifying Properties of Geometric Figures
- 2.6 Exploring Properties of Geometric Figures
- 2.7 Using Coordinates to Solve Problems



# **Chapter 3: Graphs of Quadratic**

- 3.1 Exploring Quadratic Relations
- 3.2 Properties of Graphs of Quadratic Relations
- 3.3 Factored Form of a Quadratic Relation
- 3.4 Expanding Quadratic Expressions
- 3.5 Quadratic Models Using Factored Form
- 3.6 Exploring Quadratic and Exponential Graphs



# **Rubrics:**

| Category                                                            | Level R<br>(0 – 49%)                          | Level 1<br>(50-59%)                      | Level 2<br>(60-69%)                   | Level 3<br>(70-79%)                           | Level 4<br>(80-100%)                      | Level/<br>Mark |
|---------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|---------------------------------------|-----------------------------------------------|-------------------------------------------|----------------|
| Knowledge  - Understanding of:  (Mid Term Exam: Topics: 1.1 to 3.6) | demonstrates<br>insufficient<br>understanding | demonstrates<br>limited<br>understanding | demonstrates<br>some<br>understanding | demonstrates<br>considerable<br>understanding | demonstrates<br>thorough<br>understanding | <b>/</b>       |
|                                                                     |                                               |                                          |                                       |                                               | Individual:<br>Assigned:                  | _              |



| Category                                                                          | Level R<br>(0 – 49%)                                                       | Level 1<br>(50-59%)                                                   | Level 2<br>(60-69%)                                             | Level 3<br>(70-79%)                                                        | Level 4<br>(80-100%)                                      | Level/<br>Mark |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|----------------|
| Thinking and Inquiry (What if scenarios) of:  (Mid Term Exam: Topics: 1.1 to 3.6) | demonstrates<br>insufficient<br>ability to apply<br>different<br>scenarios | demonstrates<br>limited ability<br>to apply<br>different<br>scenarios | demonstrates<br>some ability to<br>apply different<br>scenarios | demonstrates<br>considerable<br>ability to<br>apply different<br>scenarios | demonstrates through ability to apply different scenarios | <b>\</b>       |
|                                                                                   |                                                                            |                                                                       |                                                                 |                                                                            |                                                           |                |
|                                                                                   |                                                                            |                                                                       |                                                                 |                                                                            | Individual:                                               |                |

.



| Category         | Level R      | Level 1      | Level 2      | Level 3      | Level 4      | Level/ |
|------------------|--------------|--------------|--------------|--------------|--------------|--------|
|                  | (0 – 49%     | (50-59%)     | (60-69%)     | (70-79%)     | (80-100%)    | Mark   |
| Communication    |              |              |              |              |              |        |
| Communicates     | demonstrates | demonstrates | demonstrates | demonstrates | demonstrates |        |
| effectively with | insufficient | limited      | some ability | considerable | through      | 1      |
| the use of       | ability to   | ability to   | to           | ability to   | ability to   |        |
|                  | communicate  | communicate  | communicate  | communicate  | communicate  |        |
| (Mid Term        | effectively  | effectively  | effectively  | effectively  | effectively  |        |
| Exam: Topics:    |              |              |              |              |              |        |
| 1.1 to 3.6)      |              |              |              |              |              |        |
|                  |              |              |              |              |              |        |
|                  |              |              |              |              |              |        |
|                  |              |              |              |              |              | /      |
|                  |              |              |              |              | Individual:  | V      |
|                  |              |              |              |              |              |        |



| Category                                                                                              | Level R                           | Level 1                      | Level 2                   | Level 3                                 | Level 4                       | Level/   |
|-------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|---------------------------|-----------------------------------------|-------------------------------|----------|
|                                                                                                       | (0 – 49%                          | (50-59%)                     | (60-69%)                  | (70-79%)                                | (80-100%)                     | Mark     |
| Application:                                                                                          |                                   |                              |                           |                                         |                               |          |
| Demonstrates<br>the ability to<br>apply<br>mathematical<br>principles to<br>real world<br>situations. | demonstrates insufficient ability | demonstrates limited ability | demonstrates some ability | demonstrates<br>considerable<br>ability | demonstrates thorough ability | <b>√</b> |
| (Mid Term                                                                                             |                                   |                              |                           |                                         |                               |          |
| Exam:                                                                                                 |                                   |                              |                           |                                         |                               |          |
| Topics: 1.1 to                                                                                        |                                   |                              |                           |                                         |                               |          |
| 3.6)                                                                                                  |                                   |                              |                           |                                         |                               |          |
|                                                                                                       |                                   |                              |                           |                                         |                               | /        |
|                                                                                                       |                                   |                              |                           |                                         | Individual:                   |          |
|                                                                                                       |                                   |                              |                           |                                         |                               |          |

# PART A: KNOWLEDGE AND UNDERSTANDING (K/U) – 25%

| 2 | Marks      | Per  | Ou | estion |
|---|------------|------|----|--------|
| _ | TATEST IND | 1 01 | Vu | Coulon |

#### **Instructions:**

Question 1: (True or False) equation for midpoint is  $M(x,y) = (\frac{run}{2}, \frac{rise}{2})$ ?

#### **False**

**Midpoint M(x,y)** = 
$$(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$$

Note: rise = 
$$\Delta y = y2 - y1$$
; run =  $\Delta x = x2 - x1$ 

Question 2: (True or False) An Isosceles triangle has two sides that are the same?

#### **True**

Question 3: (True or False) An Isosceles triangle as two angles that are the same?

#### True

Question 4: (True or False) An equilateral triangle has no sides the same?

# **False**

<u>Question 5:</u> The Centroid of a triangle is a single point outside the triangle? (True or False)

False

**Question 6:** A Centroid splits the medians of a triangle by a ratio of 2:1? (True or false) **True** 



| <b>Question 7:</b> A scalene triangle has all the sides the same? (True or false)                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------|
| False                                                                                                                             |
|                                                                                                                                   |
| <u>Question 8:</u> When two triangles are the identical, they are said to be congruent? (True or false)                           |
| True                                                                                                                              |
|                                                                                                                                   |
| <u>Question 9:</u> An Obtuse triangle is a triangle that has one angle equal to 90 degrees? (True or False)                       |
| False                                                                                                                             |
| <u>Question 10:</u> A square is not a parallelogram? (True or False)                                                              |
| False                                                                                                                             |
| <u>Question 11:</u> A parallelogram has two sides that are parallel and the other two sides are not parallel? (True or False)     |
| False                                                                                                                             |
|                                                                                                                                   |
| Question 12: (True or False) The equation for the midpoint of a line segment is $M(x,y) = (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$ |

**Question 13:** A trapezoid is a quadrilateral with exactly one pair of parallel lines? (True or false)

True

True

8



**Question 14:** A Rhombus is a parallelogram with all sides equal? (True or False)

|--|

<u>Question 15:</u> A rectangle is a parallelogram with 4 right angles, but sides has two pair of sides with equal lengths? (True or false)

True

<u>Question 16:</u> A square has 4 equal sides with only two angles that are 90 degrees? (True or False)

**False** 

<u>Question 17:</u> The right bisector of an isosceles triangle splits a triangle into two equal parts? (True or False)

True

**Question 18:** The equation of y=ax², if a is negative the parabola has a maximum? (True or False)

True

<u>Question 19:</u> The equation of  $y=ax^2$ , if a is between 0 < a < 1, the parabola is widened or compressed? (True or False)

True

<u>Question 20:</u> The equation of  $y=a(x-h)^2$ , when h > 0 the quadratic is shifted or transformed upwards or downwards by the h value? (True or False)

False

Question 21: For the equation y=x<sup>2</sup>, there is no minimum for y? (True or False)

**False** 



True

Question 23: The line of symmetry for a parabola is at x value of the vertex(x, y)? (True or False)

True

<u>Question 24:</u> A minimum or a maximum is on the vertex of a quadratic equations? (True or False)

**True** 

<u>Question 25:</u> The equation of  $y=x^2 + k$ , the k transforms the quadratic relation left or right? (True or False)

**False** 

# PART B: THINKING AND INQUIRY (T/I) - 25 %

# 5 Marks Per Question

# Show your work: If you do not you will get zero.

Question 1: Find the slope between the two Points P(2,6) and Q(8, 12)?

Slope = 
$$\mathbf{M_{pq}} = \frac{\Delta y}{\Delta x} = \frac{y2 - y1}{x2 - x1} = \frac{12 - 6}{8 - 2} = \frac{6}{6} = \mathbf{1}$$

# Question 2: Find the MidPoint between the two points A(2, -5) and B(5, 7)

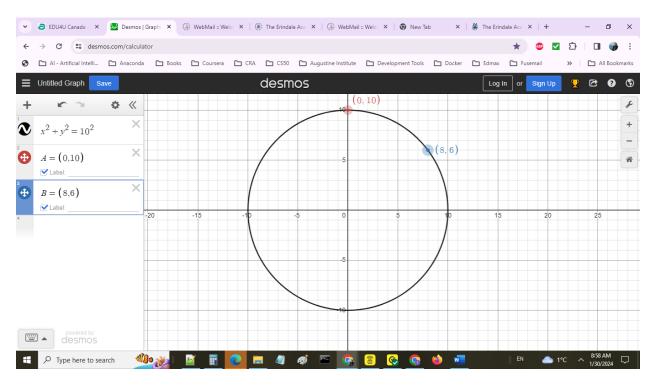
Midpoint MaB(x,y) = 
$$(\frac{2+5}{2}, \frac{-5+7}{2}) = (\frac{7}{2}, \frac{2}{2}) = (\frac{7}{2}, 1)$$

# Question 3: Identify two points that are on the circumference of the circle $x^2 + y^2 = 4^2$

Two points that are on the circumference of the circle are for example: (0, 4), (0, -4), (4, 0), (-4, 0).



# **Question 4:** Evaluate the algebraic expression when a = 2, b = 3, c = -2, d = -1


$$3a^3 + 4b + 3c - 2d = 3(2)^3 + 4(3) + 3(-2) - 2(-1)$$
  
=  $24 + 12 - 6 + 2$ 



# PART C: COMMUNICATION (C) – 25%

10 Marks Per Question

Question 1: Find the equation of line for points A (0,10) and B (8, 6) on the circle  $x^2 + y^2 = 10^2$  and perpendicular to the line that connects points A, B?



**Slope M**<sub>AB</sub> = 
$$\frac{Rise}{Run} = \frac{\Delta y}{\Delta x} = \frac{6-10}{8-0} = \frac{-4}{8} = \frac{-1}{2}$$

Mid Point of M<sub>AB</sub> = 
$$(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}) = (\frac{0+8}{2}, \frac{10+6}{2}) = (\frac{8}{2}, \frac{16}{2}) = (4, 8)$$

Lines that are perpendicular, the product of their slopes is -1.

 $M_2 \cdot M_1 = -1$ .

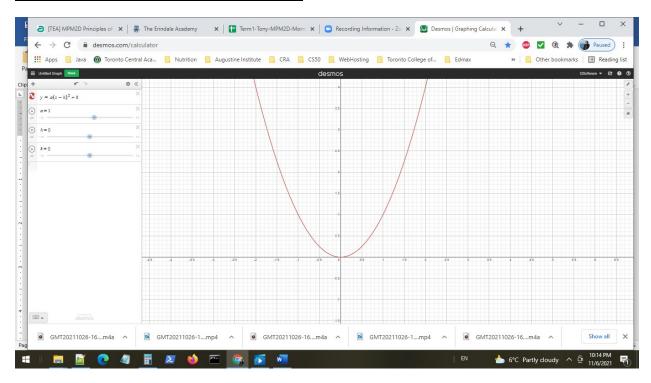
$$\mathbf{M_2} = \frac{-1}{\mathbf{M1}} = \frac{-1}{(\frac{-1}{2})} = \frac{(\frac{-1}{1})}{(\frac{-1}{2})} \cdot \frac{(\frac{-2}{1})}{(\frac{2}{1})} = \frac{(\frac{-2}{1})}{(\frac{-2}{2})} = \frac{(\frac{-2}{1})}{(\frac{-2}{2})} = \frac{(\frac{-2}{1})}{(\frac{-1}{1})} = 2$$

y = mx + b substitute slope and a point to find y-intercept. 8 = (2)(4) + b

8 = 8 + b



$$8 - 8 = b$$
$$0 = b$$

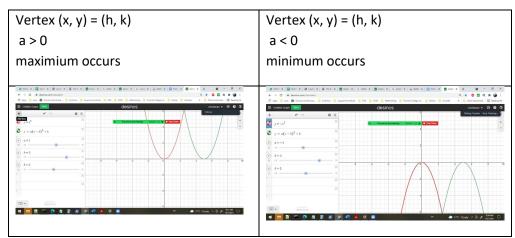

Equation of a line that is perpendicular to points A(0,10), B(8,6) is y = 2x.



# Question 2: Quadratic Equation form $y = a(x - h)^2 + k$

Please explain how does variables a, h, and k affect the transformations of a parabola relative to  $y = x^2$ ?

#### **Example the affects of the three variables:**




#### $y = a(x - h)^2 + k$ , $a \ne 0$ , h and k are real numbers

- (1) h shifts the parabola horizontally.
  - (a) If h > 0 parabola shifts to the right,
  - (b) If h < 0 parabola shifts to the left
- (2) K shifts the parabola vertically
  - (a) If k > 0 the shift is vertically upward.
  - (b) If k < 0 the shift is downwards.
- (3) a determines if the parabola, is compressed or stretched.
  - (a) If a > 0,
    - (i) the parabola opens upwards
    - (ii) the parabola has a minimum
  - (b) If a < 0,
    - (i) the parabola opens downwards.
    - (ii) the parabola has a maximum
  - (c) if a > 1
    - (i) the parabola stretches more quickly upwards



- (ii) factored by a
- (d) if a < -1
  - (i) the parabola stretches more quickly downwards
  - (ii) factored by a
- (e) if a is a positive fraction
  - (i) the parabola is compressed or flatted
- (f) if a is a negative fraction
  - (i) the parabola is compressed or flatted
- (4) Vertex (x, y) = (h, k)



(5) Axis of symmetry occurs at h.



# THIS PAGE PURPOSELY LEFT BLACK



# PART D: APPLICATION (A) - 25%

# 10 Marks Per Question

Use your own graph paper?

Question 1: Draw quadrilateral and label the points A(-2, 1), B(3, 3), C(4, -1), and D(-1, -3)

The midpoint to line segment AB call it E.

The midpoint to line segment BC call it F.

The midpoint to line segment DC call it G.

The midpoint to line segment AD call it H.

What type of parallelograms are ABCD, and EFGH?

Points: A(-2, 1), B(3, 3), C(4, -1), D(-1,-3)

| $Mid_{AB} = \left(\frac{-2+3}{2}, \frac{1+3}{2}\right)$         | E(x, y) = $(\frac{1}{2}, \frac{4}{2}) = (\frac{1}{2}, 2)$    | $E(\frac{1}{2}, 2)$   |
|-----------------------------------------------------------------|--------------------------------------------------------------|-----------------------|
| MidBC = $(\frac{3+4}{2}, \frac{3+(-1)}{2})$                     | $F(x, y) = (\frac{7}{2}, \frac{2}{2}) = (\frac{7}{2}, 1)$    | $F(\frac{7}{2}, 1)$   |
| $Mid_{CD} = \left(\frac{4 + (-1)}{2}, \frac{-1 + -3}{2}\right)$ | G(x, y) = $(\frac{3}{2}, \frac{4}{2})$ = $(\frac{3}{2}, -2)$ | $G(\frac{3}{2}, -2)$  |
| $Mid_{DA} = \left(\frac{-1 + (-2)}{2}, \frac{-3 + 1}{2}\right)$ | $H(x, y) = (\frac{-3}{2}, \frac{-2}{2})$                     | $H(\frac{-3}{2}, -1)$ |



# Formula for Slope of Line Segment:

Slope = 
$$\frac{\Delta y}{\Delta x} = \frac{y2-y1}{x2-x1}$$

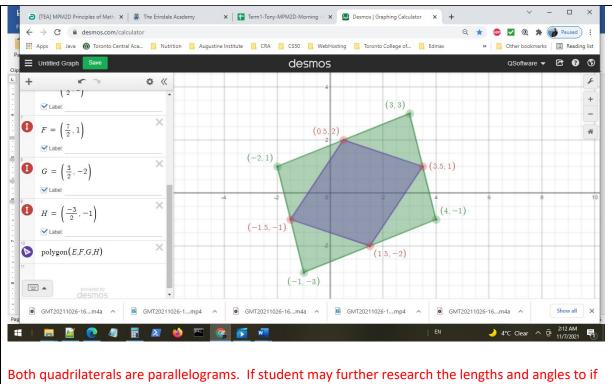
| Original Points                             | Midpoints:                                                                         |
|---------------------------------------------|------------------------------------------------------------------------------------|
| A(-2, 1)<br>B(3, 3)<br>C(4, -1)<br>D(-1,-3) | $E(\frac{1}{2}, 2)$ $F(\frac{7}{2}, 1)$ $G(\frac{3}{2}, -2)$ $H(\frac{-3}{2}, -1)$ |

| Slopes (M) = (AB, DC)                               | Slopes (M) = (AD, BC)                    |
|-----------------------------------------------------|------------------------------------------|
| $M_{AB} = \frac{3-1}{3-(-2)} = \frac{2}{5}$         | $M_{AD} = \frac{-3 - 1}{-1 - (-2)} = -4$ |
| $M_{DC} = \frac{-1 - (-3)}{4 - (-1)} = \frac{2}{5}$ | $M_{BC} = \frac{-1 - 3}{4 - 3} = -4$     |

$$M_{AB} = M_{DC} = \frac{2}{5}$$

$$M_{AD} = M_{BC} = -4$$

∴ The outer quadrilateral is a parallelogram since the opposite sides the slopes are the same.


| Slopes (M) = (EH, FG)                                                                             | Slopes (M) = (EF, HG)                                                                            |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $M_{EH} = \frac{-1 - 2}{(\frac{-3}{2} - (\frac{-1}{2}))} = \frac{-3}{-2} = \frac{3}{2}$           | $M_{EF} = \frac{1-2}{(\frac{7}{2} - (\frac{-1}{2}))} = \frac{1-2}{(\frac{6}{2})} = \frac{-1}{3}$ |
| $M_{FG} = \frac{-2 - 1}{(\frac{3}{2} - (\frac{7}{2}))} = \frac{-3}{(\frac{-4}{2})} = \frac{3}{2}$ | $M_{HG} = \frac{-2 - 1}{(\frac{3}{2} - (\frac{7}{2}))} = \frac{-1}{3}$                           |

$$M_{EH} = M_{FG} = \frac{3}{2}$$

$$M_{EF} = M_{HG} = \frac{3}{2}$$

∴ The inner quadrilateral is a parallelogram





Both quadrilaterals are parallelograms. If student may further research the lengths and angles to if the quadrilaterals can be special type of other shapes such as: sqaures, rectangles, rombus, or kites.

# **Question 2:** Use Method of elimination to solve the equations of lines:

1. 
$$4x - 1y = 2$$

2. 
$$3x + y = 19$$

Solve the equation of the lines algebraically as well as plotting the graphs of the two lines on the same graph.

$$1 4x - 1y = 2$$

$$\stackrel{'}{2}$$
 3x + y = 19  $\leftarrow$  add equation  $\stackrel{'}{1}$  and  $\stackrel{'}{2}$ 

$$7x + 0y = 21$$

$$x = \frac{21}{7} = 3$$

Substitute x = 3 into equation 2

$$(2)$$
 3x + y = 19

$$3(3) + y = 19$$

$$9 + y = 19$$

$$y = 19 - 9$$

$$y = 10$$

Point is P(x, y) = (3, 10)

substitute into equation 1 and 2

$$1 4x - 1y = 2$$

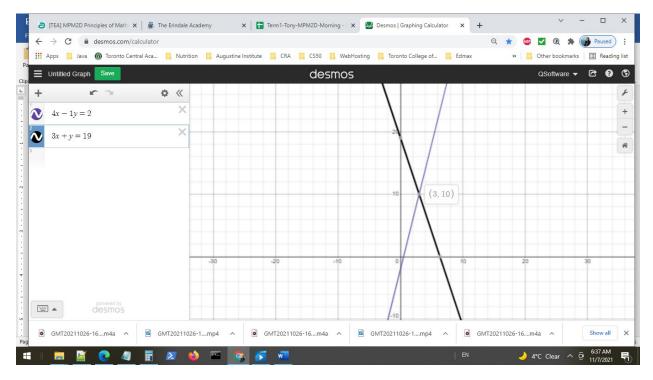
L.S. = 
$$4x - 1y$$

L.S. = 
$$4(3) - 1(10)$$

$$R.S = 2$$

$$(2)$$
 3x + y = 19

L.S. = 
$$3x + y$$


$$L.S. = 3(3) + 10$$

Since point (x, y) = (3, 10) satisfies both equations.

This is the point of intersection.



#### Attach graph here



Graph shows P(x, y) = (3, 10) as point of intersection as well.