COURSE NAME: MPM2D – Principles of Mathematics (Final Exam – Accumulative) MPM2D: Final Exam Teacher: Antonio Pietrangelo Time: (3 + 1) Hours – with ESL accommodation Due Date: Thursday, February 29th, 01:00 pm (EST) Pages: 22 Mark: /100 | Categories | Knowledge/
Understanding | Thinking/Inquiry/
Problem Solving | Communication | Application | |------------|-----------------------------|--------------------------------------|---------------|-------------| | Symbol | K/U | T/I | С | A | | Weight | 25 % | 25 % | 25 % | 25 % | | Level | | | | | # **Overall Expectations:** Expectations as listed in the Ontario Curriculum course outline for your specific course. ## **Specific Expectations** Unit 1 - Systems of Linear Equations - 1.1 Representing Linear Relations - 1.2 Solving Linear Equations - 1.3 Graphically Solving Linear Systems - 1.4 Solving Linear Systems: Substitution - 1.5 Equivalent Linear Systems - 1.6 Solving Linear Systems: Elimination - 1.7 Exploring Linear Systems **Chapter 2: Analytic Geometry: Line Segments and Circles** - 2.1 Midpoint of a Line Segment - 2.2 Length of a Line Segment - 2.3 Equation of a Circle - 2.4 Classifying Figures on a Coordinate Grid - 2.5 Verifying Properties of Geometric Figures - 2.6 Exploring Properties of Geometric Figures - 2.7 Using Coordinates to Solve Problems ### **Chapter 3: Graphs of Quadratic** - 3.1 Exploring Quadratic Relations - 3.2 Properties of Graphs of Quadratic Relations - 3.3 Factored Form of a Quadratic Relation - 3.4 Expanding Quadratic Expressions - 3.5 Quadratic Models Using Factored Form - 3.6 Exploring Quadratic and Exponential Graphs ### **Chapter 4: Factoring Algebraic** - **4.1 Common Factors in Polynomials** - **4.2 Exploring the Factorization of Trinomials** - 4.3 Factoring Quadratics: $ax^2 + bx + c$, where a = 1, and b, c are integers - 4.4 Factoring Quadratics: ax^2 + bx + c, where a <> 1 and a, b, c, are integers - 4.5 Factoring Quadratics: Special Cases - 4.6 Reasoning about Factoring Polynomials ### **Chapter 5: Applying Quadratic** - 5.1 Stretching/Reflecting Quadratic Relations - 5.2 Exploring Translations of Quadratic Relations - 5.3 Graphing Quadratics in Vertex Form - **5.4 Quadratic Models Using Vertex Form** - **5.5 Solving Problems Using Quadratic Relations** - 5.6 Connecting Standard and Vertex Forms ### **Chapter 6: Quadratic Equations** - **6.1 Solving Quadratic Equations** - **6.2 Exploring the Creation of Perfect Squares** - 6.3 Completing the Square - 6.4 The Quadratic Formula - **6.5 Interpreting Quadratic Equation Roots** - **6.6 Solving Problems Using Quadratic Models** ### **Chapter 7: Similar Triangles and Trigonometry** - 7.1 Congruence and Similarity in Triangles - 7.2 Solving Similar Triangle Problems - 7.3 Exploring Similar Right Triangles - 7.4 The Primary Trigonometric Ratios - 7.5 Solving Right Triangles - 7.6 Solving Right Triangle Problems ### **Chapter 8: Acute Triangle Trigonometry** - 8.1 Exploring the Sine Law - 8.2 Applying the Sine Law - 8.3 Exploring the Cosine Law - 8.4 Applying the Cosine Law - **8.5 Solving Acute Triangle Problems** # **Rubrics:** | Category | Level R
(0 – 49%) | Level 1
(50-59%) | Level 2
(60-69%) | Level 3
(70-79%) | Level 4
(80-100%) | Level/
Mark | |--|---|--|---------------------------------------|---|---|----------------| | Knowledge - Understanding of: (Final Exam: Topics: 1.1 to 8.5) | demonstrates
insufficient
understanding | demonstrates
limited
understanding | demonstrates
some
understanding | demonstrates
considerable
understanding | demonstrates
thorough
understanding | | | | | | | | Individual:
Assigned: | | | Category | Level R
(0 – 49%) | Level 1
(50-59%) | Level 2
(60-69%) | Level 3
(70-79%) | Level 4
(80-100%) | Level/
Mark | |---|--|---|---|--|--|----------------| | Thinking and Inquiry (What if scenarios) of (Final Exam: Topics: 1.1 to 8.5) | demonstrates
insufficient
ability to apply
different
scenarios | demonstrates
limited ability
to apply
different
scenarios | demonstrates
some ability to
apply different
scenarios | demonstrates
considerable
ability to
apply different
scenarios | demonstrates
through
ability to
apply
different
scenarios | | | | | | | | Individual: | | • | Category | Level R
(0 – 49% | Level 1
(50-59%) | Level 2
(60-69%) | Level 3
(70-79%) | Level 4
(80-100%) | Level/
Mark | |--|--|---|--|--|---|----------------| | Communication | | | | | | | | Communicates effectively with the use of | demonstrates insufficient ability to communicate effectively | demonstrates limited ability to communicate effectively | demonstrates some ability to communicate effectively | demonstrates considerable ability to communicate effectively | demonstrates through ability to communicate effectively | | | (Final Exam:
Topics: 1.1 to
8.5) | | | | | | | | | | | | | Individual: | | | Category | Level R
(0 – 49% | Level 1
(50-59%) | Level 2
(60-69%) | Level 3
(70-79%) | Level 4
(80-100%) | Level/
Mark | |---|-----------------------------------|------------------------------|---------------------------|---|-------------------------------|----------------| | Application: Demonstrates the ability to apply mathematical principles to real world situations. | demonstrates insufficient ability | demonstrates limited ability | demonstrates some ability | demonstrates
considerable
ability | demonstrates thorough ability | | | (Final Exam:
Topics: 1.1 to
8.5) | | | | | | | | | | | | | Individual: | | # PART A: KNOWLEDGE AND UNDERSTANDING (K/U) – 25% | 2 Marks Per Question | |--| | Instructions: <u>Ouestion 1:</u> The Centroid of a triangle is a single point outside the triangle? (True or False) | | Question 2: A Centroid splits the medians of a triangle by a ratio of 2:1? (True or false) | | Question 3: The cos90° is equal to 1? (True or False) | | <u>Question 4:</u> The tangent of angle is a ratio two sides of a right-angle triangle: Adjacent / Opposite? (True or False) | | Question 5: A scalene triangle has all the sides the same? (True or false) | | <u>Question 6:</u> When two triangles are the identical, they are said to be congruent? (True or false) | | <u>Question 7:</u> An Obtuse triangle is a triangle that has one angle equal to 90 degrees? (True or False) | # **Question 8:** A square is not a parallelogram? (True or False) **Question 9:** A parallelogram has two sides that are parallel and the other two sides are not parallel? (True or False) Question 10: (True or False) The equation for the midpoint of a line segment is $M(x,y) = (\frac{x\mathbf{1}+x\mathbf{2}}{2}, \frac{y\mathbf{1}+y\mathbf{2}}{2})$ **Question 11:** A trapezoid is a quadrilateral with exactly one pair of parallel lines? (True or false) **Question 12:** A Rhombus is a parallelogram with all sides equal? (True or False) <u>Question 13:</u> A rectangle is a parallelogram with 4 right angles, but sides has two pair of sides with equal lengths? (True or false) <u>Question 14:</u> A square has 4 equal sides with only two angles that are 90 degrees? (True or False) <u>Question 15:</u> The right bisector of an isosceles triangle splits a triangle into two equal parts? (True or False) **Question 16:** The equation of y=ax², if a is negative the parabola has a maximum? (True or False) Question 17: The equation of $y=ax^2$, if a is between 0 < a < 1, the parabola is widened or compressed? (True or False) Question 18: The equation of $y=a(x-h)^2$, when h > 0 the quadratic is shifted or transformed upwards or downwards by the h value? (True or False) Question 19: For the equation y=x², there is no minimum for y? (True or False) Question 20: For the equation $y = -x^2$ maximum value for y is zero? (True or False) Question 21: The line of symmetry for a parabola is at x value of the vertex(x, y)? (True or False) <u>Question 22:</u> A minimum or a maximum is on the vertex of a quadratic equations? (True or False) <u>Question 23:</u> The y-coordinate of the vertex(x, y) is the point where the line of symmetry is for a quadratic equation? (True or False) <u>Question 24:</u> The equation of y=a(x-r)(x-s), the r, and s values are where the zeros occur? (True or False) <u>Question 25:</u> The equation of $y=x^2 + k$, the k transforms the quadratic relation left or right? (True or False) Question 26: (True or False) equation for midpoint is $M(x,y) = (\frac{run}{2}, \frac{rise}{2})$? Question 27: (True or False) An Isosceles triangle has two sides that are the same? **Question 28:** (True or False) An Isosceles triangle as two angles that are the same? Question 29: (True or False) An equilateral triangle has no sides the same? **Question 30:** The sin90° has a value of 1? (True or False) # PART B: THINKING AND INQUIRY (T/I) – 25 % **5 Marks Per Question** Show your work: If you do not you will get zero. Question 1: Find the equation of line that is perpendicular to the points A(0,10) and B(8, 6)? Question 2: Identify two points that are on the circumference of the circle $x^2 + y^2 = 5^2$ **Question 3:** Evaluate the algebraic expression when a = 4, b = 2, c = -3, d = -5 $$4a^3 + 6b + 2c - 8d =$$ Question 4: Find the vertex for equation $y = (x - 3)^2 + 6$ # **Question 5:** Find the line of symmetry for y = 2(x-8)(x+4) Question 6: Find the sinA, cosA, tanA, when A is an able of 60° Question 7: Find the slope between the two Points P(4,8) and Q(10, 16)? **Question 8:** Find the MidPoint between the two points A(2, -3) and B(6, 9) # PART C: COMMUNICATION (C) – 25% 10 Marks Per Question Question 1: Quadratic Equation form $y = a(x - h)^2 + k$ Please explain how does variables a, h , and k affect the transformations of a parabola relative to $y=x^2$? **Example the affects of the three variables:** **Question 2:** In trigonometry explain the acronym SOH CAH TOA in terms of the three primary trigonometric functions. **Example the acronym:** # THIS PAGE PURPOSELY LEFT BLACK # PART D: APPLICATION (A) – 25% # 10 Marks Per Question Use your own graph paper? Question 1: Draw quadrilateral and label the points A(-2, 1), B(-1, -3), C(4, -1), and D(3, 3) The midpoint to line segment AB call it E. The midpoint to line segment BC call it F. The midpoint to line segment DC call it G. The midpoint to line segment AD call it H. What type of type of polygon is EFGH? Please prove it with algebraic for full marks!!!!!!! # Attach graph here. # **Question 2:** Use Method of elimination to solve the equations of lines: 1. $$8x - 2y = 4$$ 2. $$6x + 2y = 38$$ Solve the equation of the lines algebraically as well as plotting the graphs of the two lines on the same graph below. Solve the equations algebraically for full marks!!!!! # **Question 3:** # Given the following Trigonometric ratios below: Find the values for sin(A), cos(A), tan(A) for a triangle with the lengths of these sides. Leave answers in fractions. # Question 4: Use the Cosine Law to find the length of side W.