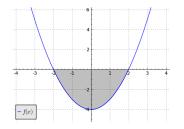


Solving Polynomial Inequalities Graphically Example Solve $x^2 - 4 < 0$. $f(x) = x^2 - 4$ is a quadratic function with its vertex at (0, -4) and Q2-Q1 end behaviour, as show below. $\int \frac{1}{4} \int \frac{1}{2} \int \frac{1}$

Solving Polynomial Inequalities Algebraically

If a polynomial inequality, P(x), has the form $P(x) \oplus 0$ (where \oplus represents some inequality symbol) then the inequality can be found by determining the roots of the polynomial expression.


Sometimes this is easy to do using a graph, but in many cases we will need an algebraic solution instead.

This may be done using either cases or intervals.

Solving Polynomial Inequalities Graphically

f(x) < 0 when it is below the x-axis.

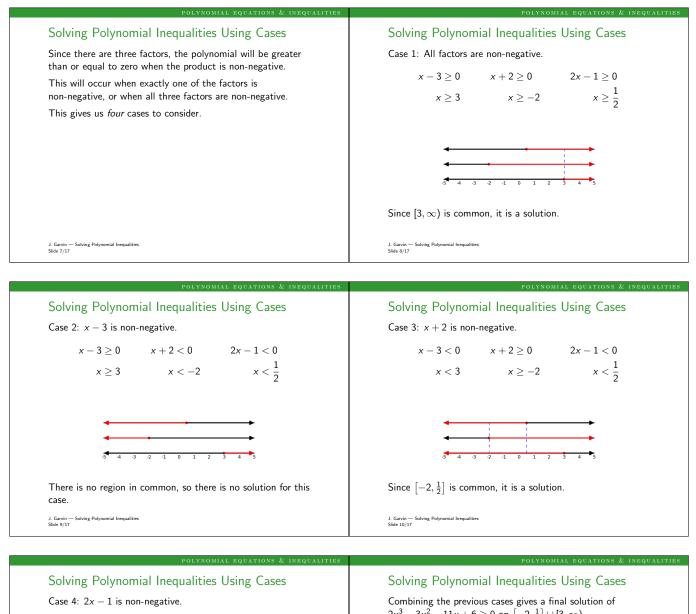
As shown on the graph, f(x) is below the x-axis when it is between the two x-intercepts at -2 and 2.

Therefore, $x^2-4<0$ on the interval (-2,2). . . Garvin – Solving Polynomial Inequalities Slide $^{4/17}$

POLYNOMIAL EQUATIONS & INEQUALITIES

Solving Polynomial Inequalities Using Cases

Example Solve $2x^3 - 3x^2 - 11x + 6 \ge 0$.


Factor the polynomial expression to determine its *x*-intercepts.

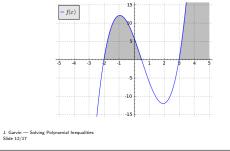
 $2(3)^3 - 3(3)^2 - 11(3) + 6 = 0$, so x - 3 is a factor.

Therefore, $(x - 3)(2x^2 + 3x - 2) \ge 0$. Decomposing, $(x - 3)(x + 2)(2x - 1) \ge 0$.

J. Garvin — Solving Polynomial Inequalities Slide 6/17

J. Garvin — Solving Polynomial Inequalities Slide 5/17

x - 3 < 0 x + 2 < 0 $2x - 1 \ge 0$

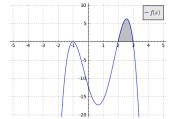

There is no region in common, so there is no solution for this

case.

J. Garvin — Solving Polynomial Inequalities Slide 11/17

x < 3 x < -2 $x \ge \frac{1}{2}$

 $2x^3 - 3x^2 - 11x + 6 \ge 0$ on $[-2, \frac{1}{2}] \cup [3, \infty)$. Graphing $f(x) = 2x^3 - 3x^2 - 11x + 6$ shows that this is the case.



POLYNOMIAL EQUATIONS & INEQUALITIES	POLYNOMIAL EQUATIONS & INEQUA		
Solving Polynomial Inequalities Using Intervals	Solving Polynomial Inequalities Using Intervals Example Solve $-2x^4 + 6x^3 + 6x^2 - 14x - 12 > 0$ First, factor the equation. 2 -2 6 6 -14 -12 + -4 4 20 12 $\hline -2 2 10 6 0$ 3 -2 2 10 -6 + -6 -12 -6 $\hline -2 -4 -2 0$ Therefore, $-2(x - 2)(x - 3)(x^2 + 2x + 1) > 0$. Factoring the perfect square, $-2(x - 2)(x - 3)(x + 1)^2 > 0$. Note that the FT would identify $x + 1$ as a factor, but would not indicate that it is order 2. Learn = 5 wing Paynemial Inguilations		
Using cases is an algebraic alternative to using a graph, but can be tedious.			
Since a polynomial function changes sign when it crosses the x-axis, each x-intercept divides a polynomial function into ntervals that are either positive or negative. We can test values inside of each interval to determine whether the function is positive or negative within that nterval. Often, this is a much faster method than using cases.			
. Garvin — Solving Polynomial Inequalities Ilide 13/17	J. Gavin — Solving Polynomial Inequalities Slide 14/17		
POLYNOMIAL EQUATIONS & INEQUALITIES	POLYNOMIAL EQUATIONS & INEQUA		
Solving Polynomial Inequalities Using Intervals	Solving Polynomial Inequalities Using Cases		
The polynomial has roots at 2, 3 and -1 .	By the table, $-2x^4 + 6x^3 + 6x^2 - 14x - 12 > 0$ on (2,3).		
These values divide the polynomial into four intervals.	Graphing $f(x) = -2x^4 + 6x^3 + 6x^2 - 14x - 12$ shows that this is true.		
-5 -4 -3 -2 -3 0 1 2 3 4 5			

Test values within each interval to determine the sign.

Interval	$(-\infty, -1)$	(-1, 2)	(2,3)	$(3,\infty)$
x	-2	0	52	4
Sign of $P(x)$	—	_	+	_

J. Garvin — Solving Polynomial Inequalities Slide 15/17

J. Garvin — Solving Polynomial Inequalities Slide 16/17

