<u>Chapter 3.1 – Higher Order Derivatives, Velocity, and Acceleration</u>

The second derivative of y = f(x) is the derivative of y = f'(x).

- In Newtonian notation, the second derivative is f''(x)
- In Leibniz notation, the second derivative is $\frac{d^2 y}{dx^2}$

<u>Velocity</u>: If the position of an object, s(t), is a function of time, t, then the first derivative of this function represents the velocity of the object at time t.

 \triangleright

Acceleration: Acceleration, a(t), is the instantaneous rate of change of velocity with respect to time. Acceleration is the first derivative of the velocity function and the second derivative of the position function

$$a(t) = v'(t) = s''(t)$$
 or $a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}$

- Negative velocity, v(t) < 0 or s'(t) < 0, indicates that an object is moving in a negative direction (left or down) at time t, while positive velocity, v(t) > 0 or s'(t) > 0, indicates that an object is moving in a positive direction (right or up) at time t
- Zero velocity, v(t) = 0 or s'(t) = 0, indicates that an object is stationary and that a possible change in direction may occur at time t.
- Negative acceleration, a(t) < 0 or v'(t) < 0 or s''(t) < 0 indicates that the velocity is decreasing, while positive acceleration, a(t) > 0 or v'(t) > 0 or s''(t) > 0 indicates that the velocity is increasing.

- Zero acceleration, a(t) = 0 or v'(t) = 0 or s''(t) = 0 indicates that the velocity is constant and that the object is neither accelerating nor decelerating
- An object is accelerating (speeding up) when its velocity and acceleration have the same signs. However, an object is decelerating (slowing down) when its velocity and acceleration have opposite signs.
- The speed of an object is the magnitude of its velocity at time t.
 - Speed = |v(t)| = |s'(t)|

Example 1 – Determine the second derivative of $f(x) = \frac{x}{1+x}$ when x = 1.

Example 2 - The position of an object moving on a line is given by $s(t) = 6t^2 - t^3, t \ge 0$, where *s* is in metres and *t* is in seconds.

- a) Determine the velocity and acceleration of the object at t = 2.
- b) At what time(s) is the object at rest?
- c) In which direction is the object moving at t = 5?
- d) When is the object moving in a positive direction?
- e) When does the object return to its initial position?

Example 3 Discuss the motion of an object moving in a horizontal line if its position is given by $s(t) = t^2 - 10t, 0 \le t \le 12$, where *s* is in metres and *t* is in seconds. Include the initial velocity, final velocity, and any acceleration in your discussion.

Example 4 – A baseball is hit vertically upward. The position function s(t), in metres, of the ball above the ground is $s(t) = -5t^2 + 30t + 1$, where *t* is in seconds.

- a) Determine the maximum height reached by the ball.
- b) Determine the velocity of the ball when it is caught 1 m above the ground.