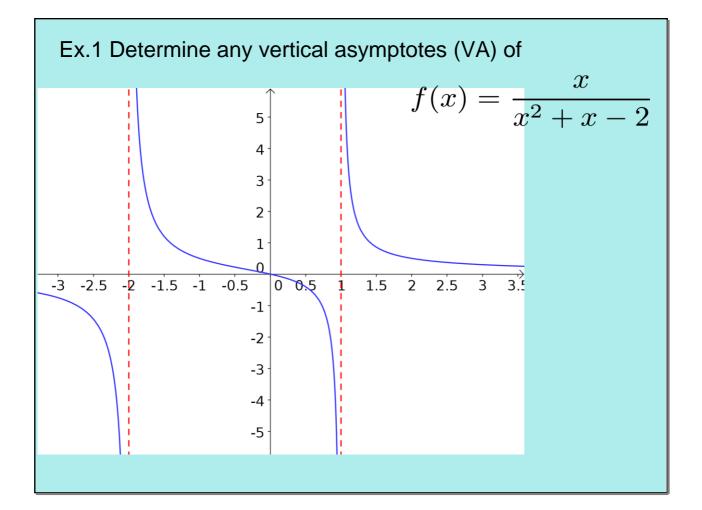


MCV4U:4.3 Vertical & Horizontal

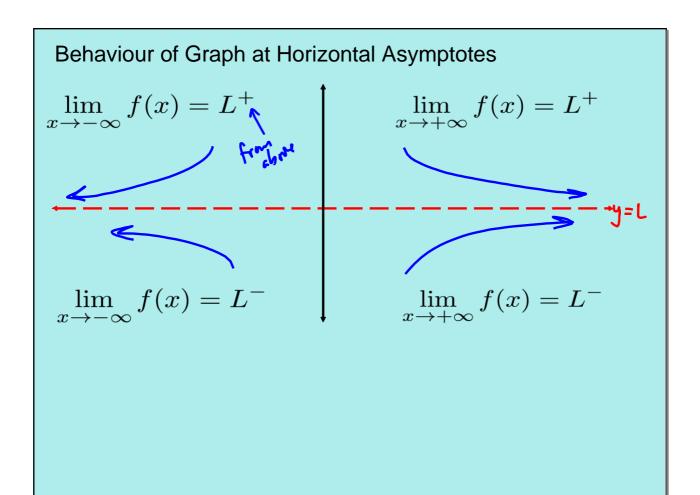
Ex.1 Determine any vertical asymptotes (VA) of $f(x) = \frac{x}{x^2 + x - 2}$ and describe the behaviour of the graph for values near the asymptotes. $f(x) = \frac{x}{(x+2)(x+1)}$ $x \neq -2, x \neq 1$ $\sqrt{A \cdot x} = -2$ $\lim_{\substack{x \to -2^{-1} \\ x \to -2^{-1}$



B. Horizontal Asymptotes

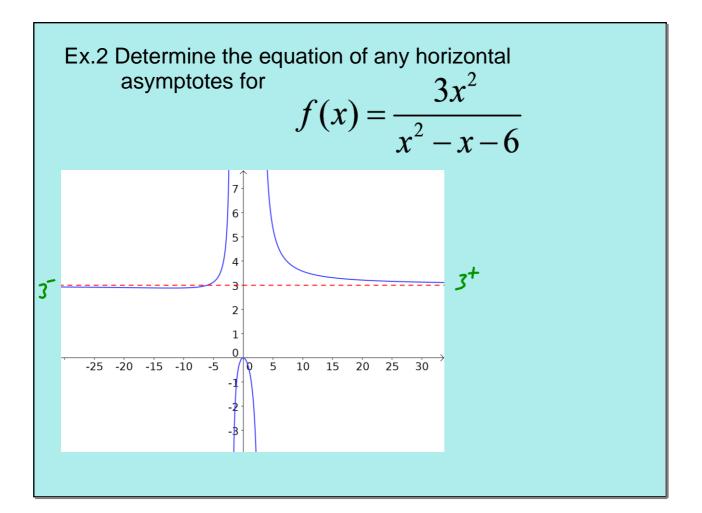
Consider the behaviour of the function as x tends to positive and negative infinity.

If
$$\lim_{x \to +\infty} f(x) = L$$
 or $\lim_{x \to -\infty} f(x) = L$,
we say the line $y = L$ is a horizontal asymptote (HA).
Strategy for Rational Functions:
Factor the highest-order variable from the
numerator and denominator (separately), and then
apply the limit.
Note: It is important to consider whether the function
approaches L from above or below.



MCV4U:4.3 Vertical & Horizontal

Ex.2 Determine the equation of any horizontal asymptotes for $f(x) = \frac{3x^2}{x^2 - x - 6}$
and behaviour. factor χ^2 and η^2 both num $f(\chi) = \frac{\chi^2(3)}{\chi^2(1-\frac{\chi}{\chi^2}-\frac{6}{\chi^2})}$
$4 den. = \frac{3}{1 - \frac{1}{\chi} - \frac{6}{\chi^2}}$
$HA: \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3}{1 - \frac{1}{x}^{0} - \frac{1}{x}^{0}}$ $= 3^{+} \qquad 1^{-}$
$\lim_{\chi \to -\infty} f(x) = \lim_{\chi \to -\infty} \frac{3}{1 - \frac{1}{\chi^2} - \frac{6}{\chi^2}}$
= 3 + small - smaller



Assigned Work:

p.193 # (3, 4, 5)(skip d), 6abd, 9abc, 11, 12, 13, 15*