3 – **5.4** The Derivatives of y = sinx and y = cosx

Lesson Goals:

• Be able to determine the derivative of a function containing trigonometric operations

1) Derivative of Sinusoidal Functions

• Proof of the derivative of f(x) = sinx, f'(x) = cosx

• Proof of the derivative of f(x) = cosx, f'(x) = -sinx

Example 1: Differentiate.

a) y = x cos x

b) y = sin3x

2) Derivative of Composite Sinusoidal Functions

- For $f(x) = \sin(g(x)), f'(x) = \cos(g(x))g'(x).$
- For $f(x) = \cos(g(x)), f'(x) = -\sin(g(x))g'(x).$

Example 2: Differentiate.

a)
$$y = cosx^2$$
 b) $y = cos^2x$

c)
$$y = \sin\left(2x^2 + \frac{\pi}{2}\right)$$
 d) $y = \frac{\cos 3x}{x^2}$

Example 3: Determine the equation of the tangent to the graph of $f(x) = x^2 sinx$ at $x = \pi$.	Example 4: Determine the values of x where the function $y = 2sinxcosx$ has a horizontal tangent.

3) Higher Order Derivatives

- For f(x),
 - The First Derivative is f'(x)
 - The Second Derivative is f''(x)
 - The Third Derivative is $f'''(x) = f^3(x)$

Example 5:

a) Determine the 21st derivative for f(x) = b) Determine $f^{(2002)}(x)$. sinx.

Homework: Page 256 #1-5, 8, 10, 14