4 – 5.5 The Derivative of y = tanx and the Reciprocal Functions

Lesson Goals:

• Be able to determine the derivative of a function containing trigonometric operations

1) Derivative of y = tanx

• Proof by the Quotient Rule $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$

• If $y = \tan(f(x))$, then $\frac{dy}{dx} = \sec^2(f(x)) \times f'(x)$.

Example 1: Differentiate.

a) $y = \tan 2x$ b) $y = \tan (7x^3 - 5x)$ c) $y = \tan^2(sinx)$

2) Derivative of Reciprocal Functions

Example 2: Rewrite each function using an identity with sine and/or cosine then determine $\frac{dy}{dx}$.

a) y = secx

b) y = cscx

c) y = cotx

Homework: Page 260 #1-11 (pick and choose) and Worksheet