Properties of Vectors

Apr. 24/2014

Vector Addition:

Commutative Property $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

Associative Property $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$

Distributive Property $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$, where $k \in \mathbb{R}$

Adding Zero $\vec{a} + \vec{0} = \vec{a}$

Scalar Multiplication:

Associative Law $m(n\vec{a}) = mn\vec{a}$

Distributive Law $(m+n)\vec{a} = m\vec{a} + n\vec{a}$

Apr 23-2:49 PM

Ex.1 Given that
$$\ \vec{x}=\vec{i}+3\vec{j}-2\vec{k}$$
 $\ \vec{y}=\vec{j}+5\vec{k}$ $\ \vec{z}=4\vec{i}-\vec{j}-7\vec{k}$

determine a simplified expression for $\vec{x}-\vec{y}+3\vec{z}$ in terms of $\;\vec{i},\;\vec{j}$, and $\;\vec{k}$

$$\vec{z} - \vec{y} + 3\vec{z}$$

$$= (\vec{i} + 3\vec{j} - 2\vec{k}) - (\vec{j} + 5\vec{k}) + 3(4\vec{i} - \vec{j} - 7\vec{k})$$

$$= \vec{i} + 3\vec{j} - 7\vec{k} - \vec{j} - 5\vec{k} + |2\vec{i} - 3\vec{j} - 2|\vec{k}$$

$$= |3\vec{i} - \vec{j} - 28\vec{k}|$$

Collinear Vectors

Two vectors are said to be collinear if and only if:

$$\vec{a} = k\vec{b}$$
, where $k \in \mathbb{R}$

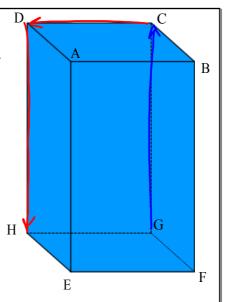
The scalar k is a scale factor, which can stretch, compress, or reflect the original vector.

Unit Vector

A unit vector is collinear to a given vector, having a magnitude of one.

Given vector \vec{v} , the corresponding unit vector is $\vec{u} = \frac{\vec{v}}{|\vec{v}|}$

Apr 23-3:00 PM


Ex.2 Write an equivalent vector and show it on the diagram.

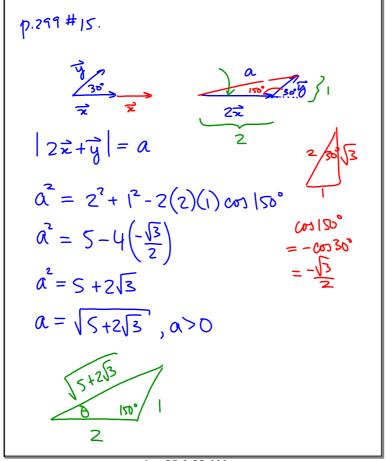
(a)
$$\overrightarrow{EG} + \overrightarrow{GH} + \overrightarrow{HD} + \overrightarrow{DC}$$

(b)
$$\overrightarrow{BD} + \overrightarrow{DA} + \overrightarrow{AB}$$

$$= \overrightarrow{O}$$

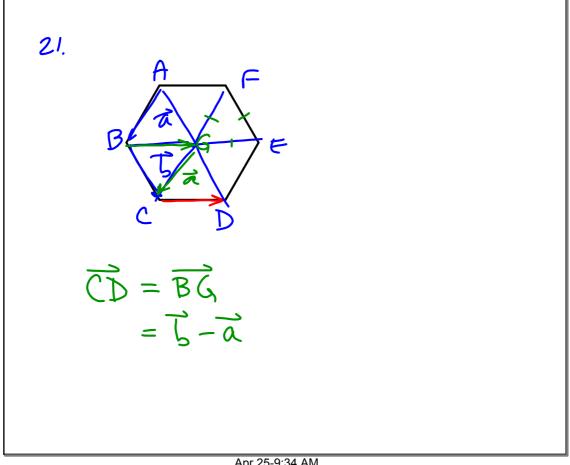
(c)
$$\overrightarrow{GC} + \overrightarrow{FE} - \overrightarrow{FB}$$

= $\overrightarrow{GC} + \overrightarrow{CD} + \overrightarrow{BF}$
= $\overrightarrow{GC} + \overrightarrow{CD} + \overrightarrow{DH}$
= \overrightarrow{GH}



Assigned Work:

$$p.299 # 1, 5 @ 12, 14 @ 19@ 1$$
 $p.306 # 5, 7, 8, @ 11$
 $p.306 # 5, 7, 8, @ 11$
 $p.279$
 $a = \frac{2}{3}b$
 $a = \frac{1}{2}c$
 $c = 2a$


(a) $mc + nb = 0$
 $m(2a) + n(3a) = 0$
 $(2m + \frac{3}{2}n) = 0$
 $(2m + \frac{3}{2}n) = 0$
 $2ma + \frac{3}{2}n = 0$
 $(2m + \frac{3}{2}n) = 0$
 $2m + \frac{3}{2}n = 0$
 $2m + \frac{3}{2}n = 0$
 $2m + \frac{3}{2}n = 0$
 $4m = -3n$
 $3, -4$
 $6 - 8$
 $9 - 3 + 9$
 $9 - 12$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$
 $1 - 8$

Apr 30-9:04 PM

Apr 25-9:22 AM

Apr 25-9:30 AM

