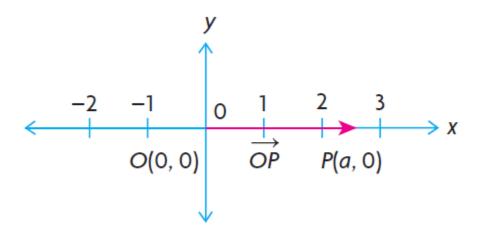
Section 6.5—Vectors in \mathbb{R}^2 and \mathbb{R}^3

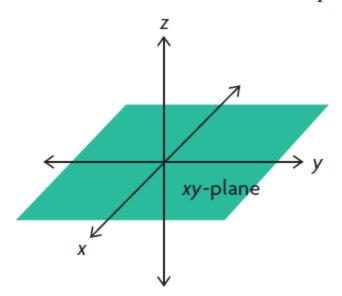
One of the most important ideas that we must consider is that of the **unique** representation of vectors in the *xy*-plane. The unique representation of the vector \overrightarrow{OP} is a matter of showing the unique representation of the point P because \overrightarrow{OP} is determined by this point. The uniqueness of vector representation will be first considered for the **position vector** \overrightarrow{OP} , which has its head at the point P(a, 0) and its tail at the origin O(0, 0) shown on the *x*-axis below. The *x*-axis is the set of real numbers, \mathbb{R} , which is made up of rational and irrational numbers.

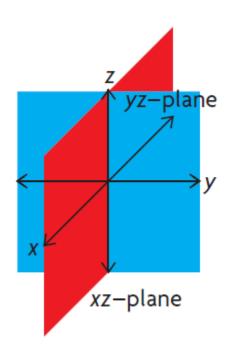
Points and Vectors in R²



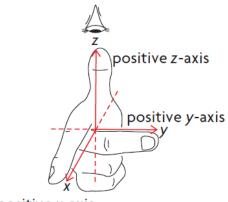
Points and Vectors in R³

..

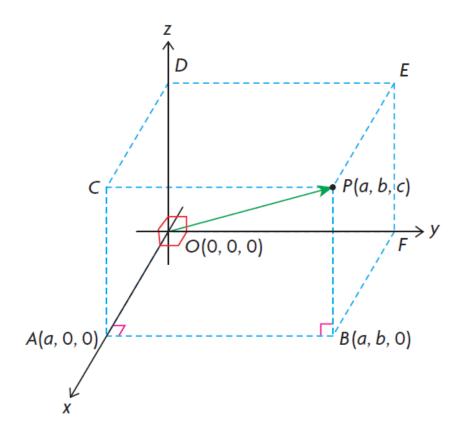




Right-Handed System of Coordinates



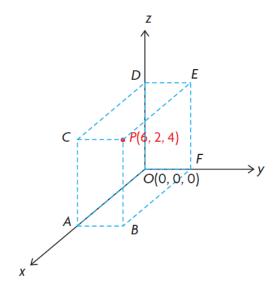
positive *x*-axis



Each point P(a, b, c) in R^3 has its location determined by an ordered triple. In the diagram above, the positive x-, y-, and z-axes are shown such that each pair of axes is perpendicular to the other and each axis represents a real number line. If we wish to locate P(a, b, c), we move along the x-axis to A(a, 0, 0), then in a direction perpendicular to the xz-plane, and parallel to the y-axis, to the point B(a, b, 0). From there, we move in a direction perpendicular to the xy-plane and parallel to the z-axis to the point P(a, b, c). This point is a vertex of a right rectangular prism.

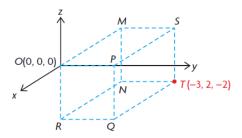
Connecting the coordinates of points and vector components in R^3

- a. In the following diagram, the point P(6, 2, 4) is located in \mathbb{R}^3 . What are the coordinates of A, B, C, D, E, and F?
- b. Draw the vector \overrightarrow{OP} .



3 Connecting the coordinates of points and vector components in R^3

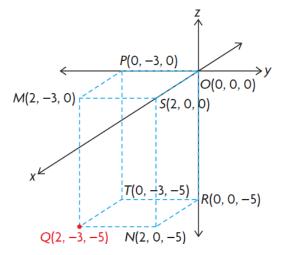
- a. In the following diagram, the point T is located in \mathbb{R}^3 . What are the coordinates of P, Q, R, M, N, and S?
- b. Draw the vector \overrightarrow{OT} .



Representing planes in R^3 with equations

The point Q(2, -3, -5) is shown in R^3 .

- a. Write an equation for the xy-plane.
- b. Write an equation for the plane containing the points P, M, Q, and T.
- c. Write a mathematical description of the set of points in rectangle *PMQT*.
- d. What is the equation of the plane parallel to the *xy*-plane passing through R(0, 0, -5)?



IN SUMMARY

Key Idea

• In R^2 or R^3 , the location of every point is unique. As a result, every vector drawn with its tail at the origin and its head at a point is also unique. This type of vector is called a position vector.

Need to Know

- In R^2 , P(a, b) is a point that is a units from O(0, 0) along the x-axis and b units parallel to the y-axis.
- The position vector \overrightarrow{OP} has its tail located at O(0, 0) and its head at P(a, b). $\overrightarrow{OP} = (a, b)$
- In R^3 , P(a, b, c) is a point that is a units from O(0, 0, 0) along the x-axis, b units parallel to the y-axis, and c units parallel to the z-axis. The position vector \overrightarrow{OP} has its tail located at O(0, 0, 0) and its head at P(a, b, c). $\overrightarrow{OP} = (a, b, c)$
- In R^3 , the three mutually perpendicular axes form a *right-handed* system.