

# Unit 2: Derivatives Lesson 1: Rules of derivatives

Г

| study on previously developed rules that simplify the process of differentiation. |                                                                                                                                                        |                                                                                   |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Name                                                                              | Rules                                                                                                                                                  | Leibniz Notation                                                                  |
| Constant<br>Function Rule:                                                        | If $f(x) = k$ , where k is a constant, then $f'(x) = 0$ .                                                                                              | $\frac{d}{dx}(k) = 0$                                                             |
| Power Rule:                                                                       | If $f(x) = x^n$ , where n is a real number, then $f'(x) = nx^{n-1}$                                                                                    | $\frac{d}{dx}(x^n) = nx^{n-1}$                                                    |
| Product Rule:                                                                     | If $y = f(x)g(x)$ , where<br>f(x) and $g(x)$ are two generic functions,                                                                                |                                                                                   |
|                                                                                   | then $y' = f'(x)g(x) + f(x)g'(x)$ .                                                                                                                    | $\frac{d}{dx}(f \times g) =$ $\frac{df}{dx} \times g + f \times \frac{dg}{dx}$    |
|                                                                                   | Similarly, If $y = f(x)g(x)h(x)$ ,                                                                                                                     | $\frac{df}{dx} \times g + f \times \frac{dg}{dx}$                                 |
|                                                                                   | where $f(x)$ , $g(x)$ and $h(x)$ are three generic functions,                                                                                          |                                                                                   |
|                                                                                   | then $y' = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)$ .                                                                                            |                                                                                   |
| Quotient Rule:                                                                    | If $y = \frac{f(x)}{g(x)}$ , where $f(x)$ and $g(x)$ are two generic functions,                                                                        | $=\frac{\frac{d}{dx}(f \div g)}{\frac{df}{dx} \times g - f \times \frac{dg}{dx}}$ |
|                                                                                   | then $y' = rac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$                                                                                                      | $=$ $g^2$                                                                         |
| Chain Rule:                                                                       | If <i>f</i> and <i>g</i> are functions that have derivatives, then the composite function $h(x) = (f \circ g)(x) = f(g(x))$ has a derivative given by: | $\frac{d}{dx}(h) = \frac{df}{dg} \times \frac{dg}{dx}$                            |
|                                                                                   | $h'(x) = f'(g(x)) \times g'(x)$                                                                                                                        |                                                                                   |



## Part I: Constant rule, power rule, and product rule.

Example 1: Find the derivative of each function.

a) 
$$f(x) = -x^2$$

b) 
$$f(x) = \sqrt[3]{x} + 5x + 8$$

c) 
$$f(x) = (2x+4)(3x-5)$$

d) 
$$f(x) = (3x^2 + 4x - 6)(2x^2 - 3x - 9)$$

Pause a sec and practice a bit before we move on: Textbook pg90. #1abcde, 6, 7b, 12

- 1. Use the product rule to differentiate each function. Simplify your answers.
  - a. h(x) = x(x 4)b.  $h(x) = x^2(2x - 1)$ c. h(x) = (3x + 2)(2x - 7)d.  $h(x) = (5x^7 + 1)(x^2 - 2x)$ e.  $s(t) = (t^2 + 1)(3 - 2t^2)$ f.  $f(x) = \frac{x - 3}{x + 3}$
- 2. Use the product rule and the power of a function rule to differentiate the following functions. Do not simplify.
  - a.  $y = (5x + 1)^3(x 4)$ b.  $y = (3x^2 + 4)(3 + x^3)^5$ c.  $y = (1 - x^2)^4(2x + 6)^3$ d.  $y = (x^2 - 9)^4(2x - 1)^3$



- 6. Determine the equation of the tangent to the curve  $y = (x^3 5x + 2)(3x^2 2x)$  at the point (1, -2).
- 7. Determine the point(s) where the tangent to the curve is horizontal.

a. 
$$y = 2(x - 29)(x + 1)$$
  
b.  $y = (x^2 + 2x + 1)(x^2 + 2x + 1)$ 

8. Use the extended product rule to differentiate the following functions. Do not simplify.

a. 
$$y = (x + 1)^3 (x + 4)(x - 3)^2$$
 b.  $y = x^2 (3x^2 + 4)^2 (3 - x^3)^4$ 

9. A 75 L gas tank has a leak. After *t* hours, the remaining volume, *V*, in litres is  $V(t) = 75\left(1 - \frac{t}{24}\right)^2$ ,  $0 \le t \le 24$ . Use the product rule to determine how

quickly the gas is leaking from the tank when the tank is 60% full of gas.

10. Determine the slope of the tangent to  $h(x) = 2x(x + 1)^3(x^2 + 2x + 1)^2$ at x = -2. Explain how to find the equation of the normal at x = -2.

#### PART C

- 11. a. Determine an expression for f'(x) if f(x) = g₁(x)g₂(x)g₃(x) ... g<sub>n-1</sub>(x)g<sub>n</sub>(x).
  b. If f(x) = (1 + x)(1 + 2x)(1 + 3x) ... (1 + nx), find f'(0).
- 12. Determine a quadratic function  $f(x) = ax^2 + bx + c$  if its graph passes through the point (2, 19) and it has a horizontal tangent at (-1, -8).



# Part II: Quotient rule

Example 2: Find the derivative of each function.

1) 
$$f(x) = \frac{x^2 - 5x}{x^3 + 1}$$

2) 
$$g(x) = \frac{x^2 - 4x - 12}{\sqrt{x} - 2}$$

3) Find the coordinate(s) on the curve of  $f(x) = \frac{2x+8}{\sqrt{x}}$ , where the tangent line is horizontal.

#### Practice from textbook: pg97. # 4, 5cd, 6, 7, 8, 9

4. Use the quotient rule to differentiate each function. Simplify your answers.

a. 
$$h(x) = \frac{x}{x+1}$$
  
b.  $h(t) = \frac{2t-3}{t+5}$   
c.  $h(x) = \frac{x^3}{2x^2-1}$   
d.  $h(x) = \frac{1}{x^2+3}$   
e.  $y = \frac{x(3x+5)}{1-x^2}$   
f.  $y = \frac{x^2-x+1}{x^2+3}$ 



- 6. Determine the slope of the tangent to the curve  $y = \frac{x^3}{x^2 6}$  at point (3, 9).
- 7. Determine the points on the graph of  $y = \frac{3x}{x-4}$  where the slope of the tangent is  $-\frac{12}{25}$ .

8. Show that there are no tangents to the graph of  $f(x) = \frac{5x+2}{x+2}$  that have a negative slope.

9. Find the point(s) at which the tangent to the curve is horizontal.

a. 
$$y = \frac{2x^2}{x - 4}$$
 b.  $y = \frac{x^2 - 1}{x^2 + x - 4}$ 

# Part III: Chain rule

Take the derivative of the outer function, leave the inner function unchanged, then multiply by the derivative of the inner function.

2

Example 3: Find the derivatives of the following.

a) 
$$y = (x^3 + 2x^2 - 3x + 5)^4$$
  
b)  $f(x) = \sqrt{x^2 - 5}$ 

c) 
$$g(x) = \frac{2}{(x^3 - 27)^4}$$
 d)  $f(x) = x(2x + 7)^4(x - 1)^2$ 



## Practice:

# Textbook: Pg106

8. Differentiate each function. Express your answer in a simplified factored form.

a. 
$$f(x) = (x + 4)^3 (x - 3)^6$$
  
b.  $y = (x^2 + 3)^3 (x^3 + 3)^2$   
c.  $y = \frac{3x^2 + 2x}{x^2 + 1}$   
d.  $h(x) = x^3 (3x - 5)^6$   
e.  $y = x^4 (1 - 4x^2)^3$   
f.  $y = \left(\frac{x^2 - 3}{x^2 + 3}\right)^4$ 

9. Find the rate of change of each function at the given value of t. Leave your answers as rational numbers, or in terms of roots and the number  $\pi$ .

a. 
$$s(t) = t^{\frac{1}{3}} (4t - 5)^{\frac{2}{3}}, t = 8$$
 b.  $s(t) = \left(\frac{t - \pi}{t - 6\pi}\right)^{\frac{1}{3}}, t = 2\pi$ 

- 10. For what values of x do the curves  $y = (1 + x^3)^2$  and  $y = 2x^6$  have the same slope?
- 11. Find the slope of the tangent to the curve  $y = (3x x^2)^{-2}$  at  $\left(2, \frac{1}{4}\right)$ .
- 12. Find the equation of the tangent to the curve  $y = (x^3 7)^5$  at x = 2.
- 13. Use the chain rule, in Leibniz notation, to find  $\frac{dy}{dx}$  at the given value of x. a.  $y = 3u^2 5u + 2$ ,  $u = x^2 1$ , x = 2

  - b.  $v = 2u^3 + 3u^2$ ,  $u = x + x^{\frac{1}{2}}$ , x = 1
  - c.  $y = u(u^2 + 3)^3$ ,  $u = (x + 3)^2$ , x = -2
  - d.  $y = u^3 5(u^3 7u)^2$ ,  $u = \sqrt{x}$ , x = 4

14. Find h'(2), given  $h(x) = f(g(x)), f(u) = u^2 - 1, g(2) = 3$ , and g'(2) = -1.

Put it ALL together:

Textbook pg110 - 113. #1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 17, 18, 19, 22, 23, 26, 27, 28, 29 Pg114. #1, 3, 4, 5, 6, 7, 8, 9, 10, 11