UNIT 1 - STRUCTURES AND PROPERTIES OF MATTERS

Lesson 2 Electron Configurations

Learning Goals

I will be able to draw energy level diagrams and write electron configurations for both atoms and ions.

Nelson Text Reference: 3.5

SCH4U

Examples: 1. Titanium atom

Aufbau Principle

Electrons are added to the **lowest** energy orbital available.

Pauli Exclusion Principle

No two electrons in an atom can have the same four quantum numbers. (i.e., only two electrons can occupy each orbital, one with $+\frac{1}{2}$ spin and

one with - $\frac{1}{2}$ spin).

Hund's Rule

Electrons in the same sublevel will **not** pair up (occupy the same orbital) until **all** orbitals in the sublevel are **half**-filled (have 1 electron).

Negative lons

The extra electrons in a negative ion occupy orbitals following the three rules.

Positive lons

Examples: 2. Silicon atom

Aufbau Principle

Electrons are added to the **lowest** energy orbital available.

Pauli Exclusion Principle

No two electrons in an atom can have the same four quantum numbers. (i.e., only two electrons can occupy each orbital, one with +1/2 spin and

one with - $\frac{1}{2}$ spin).

Hund's Rule

Electrons in the same sublevel will **not** pair up (occupy the same orbital) until **all** orbitals in the sublevel are **half**-filled (have 1 electron).

Negative lons

The extra electrons in a negative ion occupy orbitals following the three rules.

Positive lons

Examples: 3. Sulfide ion

Aufbau Principle

Electrons are added to the **lowest** energy orbital available.

Pauli Exclusion Principle

No two electrons in an atom can have the same four quantum numbers. (i.e., only two electrons can occupy each orbital, one with $+\frac{1}{2}$ spin and one with $-\frac{1}{2}$ spin).

Hund's Rule

Electrons in the same sublevel will **not** pair up (occupy the same orbital) until **all** orbitals in the sublevel are **half**-filled (have 1 electron).

Negative lons

The extra electrons in a negative ion occupy orbitals following the three rules.

Positive lons

Examples: 4. Manganese (II) ion

Aufbau Principle

Electrons are added to the **lowest** energy orbital available.

Pauli Exclusion Principle

No two electrons in an atom can have the same four quantum numbers. (i.e., only two electrons can occupy each orbital, one with +1/2 spin and

one with - $\frac{1}{2}$ spin).

Hund's Rule

Electrons in the same sublevel will **not** pair up (occupy the same orbital) until **all** orbitals in the sublevel are **half**-filled (have 1 electron).

Negative lons

The extra electrons in a negative ion occupy orbitals following the three rules.

Positive lons

- 1. Electrons are most easily lost from the outer shell.
- 2. Electron configurations tend to be more stable when there is...
 - an octet of electrons in the outer shell (ns^2np^6)
 - a filled *d*-subshell
 - a half-filled *d*-subshell

- 1. Electrons are most easily lost from the outer shell.
- 2. Electron configurations tend to be more stable when there is...
 - an **octet** of electrons in the outer shell (ns^2np^6)
 - o a filled d-subshell
 - a half-filled *d*-subshell

Example 1: Explain why carbon is paramagnetic but calcium is not paramagnetic.

- 1. Electrons are most easily lost from the outer shell.
- 2. Electron configurations tend to be more stable when there is...
 - an **octet** of electrons in the outer shell (ns^2np^6)
 - o a filled d-subshell
 - a half-filled d-subshell

Example 2: Explain the 2+ and 3+ ionic charges for iron.

- 1. Electrons are most easily lost from the outer shell.
- 2. Electron configurations tend to be more stable when there is...
 - an **octet** of electrons in the outer shell (ns^2np^6)
 - o a filled d-subshell
 - a half-filled d-subshell

Example 3: Explain the anomaly in the electron configuration of chromium.

- 1. Electrons are most easily lost from the outer shell.
- 2. Electron configurations tend to be more stable when there is...
 - an **octet** of electrons in the outer shell (ns^2np^6)
 - o a filled d-subshell
 - a half-filled *d*-subshell

Example 4: Explain why nitrogen and boron both form three covalent bonds.

Success Criteria

- I can draw electron-energy level diagrams for atoms and ions.
- I can write full and shorthand electron for atoms and ions.
 - I can use these configurations to explain
 - ionic charges,

anomalies,

paramagnetism, and

