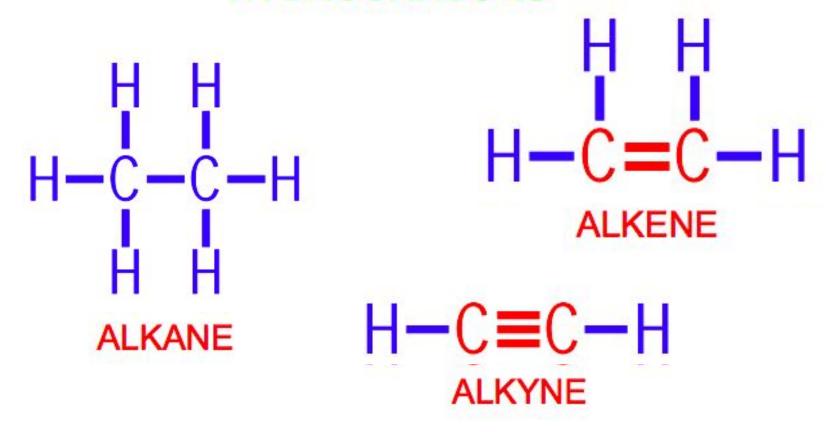
UNIT 2 - ORGANIC CHEMISTRY

Lesson 1

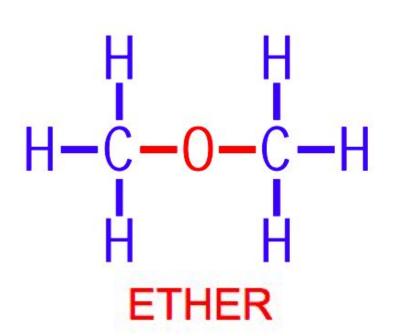
Families of Organic Compounds

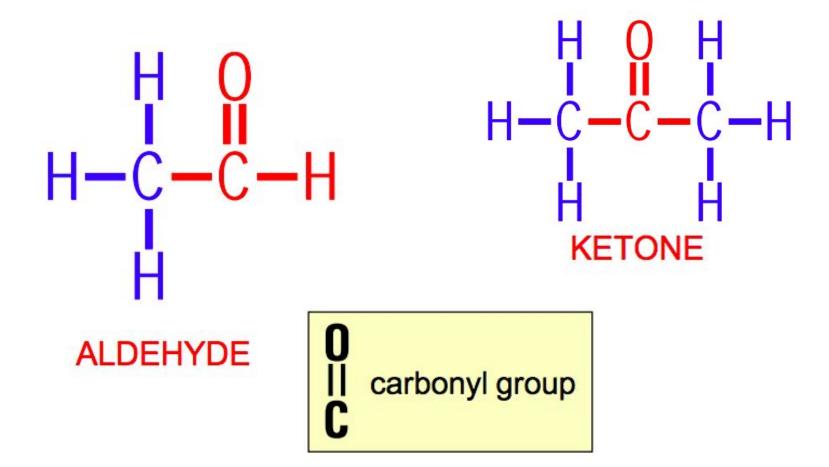
Learning Goals

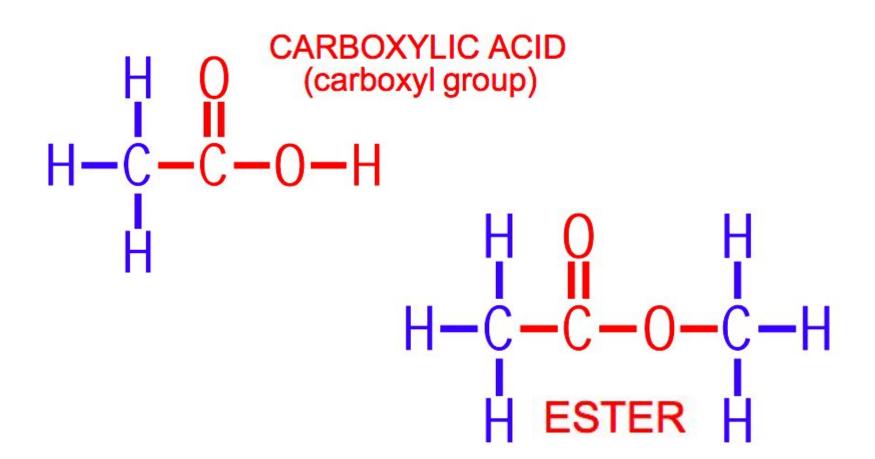
I will be able to recognize alkanes, alkenes, alkynes, alcohols, ethers, aldehydes, ketones, carboxylic acids, and esters based on the presence of functional groups.

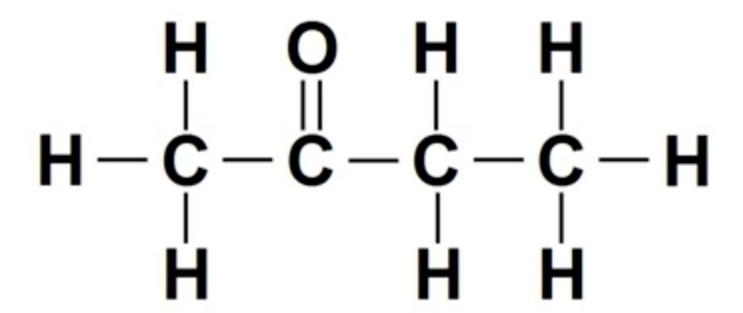

Organic Chemistry

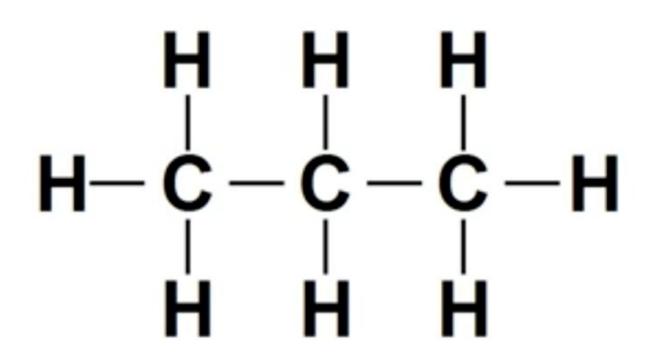
is the study of the structure, properties, and reactions of **carbon**-containing compounds.

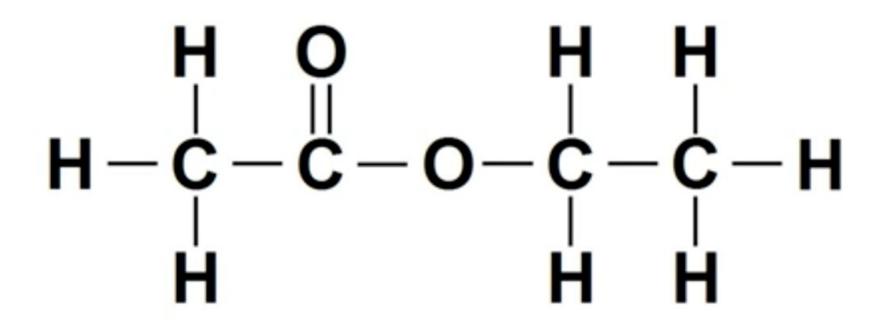

1		Number of															8 VIIIA
1 H 1.01	2	Valence Electrons									3	4	5	6	77	2 He 4.00	
3	4											5	6	7	8	9	10
Li	Be											B	C	N	O	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19,00	20,18
11 Na 22.99	12 Mg 24.31	3	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 1B	12 IIB	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35,45	18 Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.08	44.96	47,88	50,94	52.00	54,94	55.85	58.93	58.69	63.55	65,39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106,42	107.87	112,41	114.82	118.71	121.76	127,6	126.9	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209	(209)	(210)	(222)
87 Fr (223)	88 Ra (226)	89 Ac^ (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (264)	108 Hs (265)	109 Mt (268)	110 Ds (271)	111 Rg (272)					1200	12.00	,

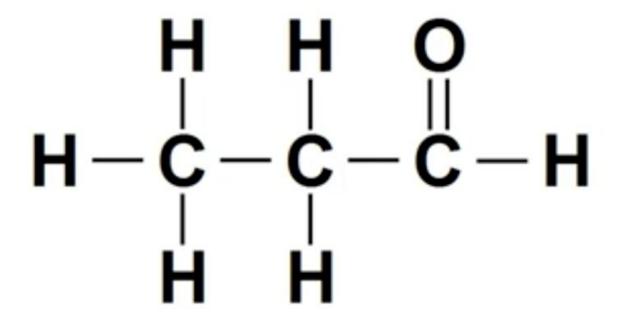

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
^	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

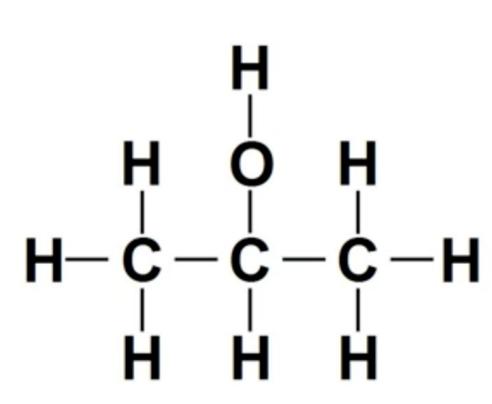

HYDROCARBONS











$$\mathbf{H} - \mathbf{C} \equiv \mathbf{C} - \mathbf{C} - \mathbf{C} - \mathbf{O} - \mathbf{H}$$

Success Criteria

- ☐ Based on the presence of **functional groups**, I can recognize
 - alkanes
 - □ alkenes
 - □ alkynes
 - □ alcohols
 - □ ethers
 - □ aldehydes

 - □ carboxylic acids
 - **□** esters