
2.8 The Derivative of Sine and Cosine

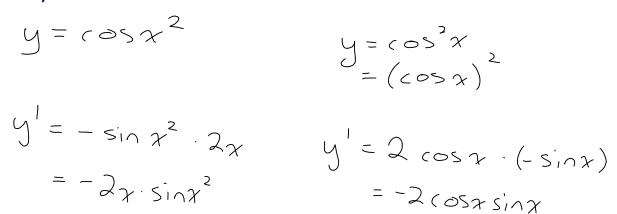
c)
$$y = e^{\cos 3x}$$

 $y' = e^{\cos(3x)} \cdot (-\sin(3x) \cdot 3)$
 $y' = 2(\sin x - 2\cos x)^{2}$
 $y' = 2(\sin x - 2\cos x)(\cos x + 2\sin x)$
 $= -3\sin(3x)e^{\cos(3x)}$

e)
$$y = \frac{\sin x - \cos x}{\sin x + \cos x}$$

 $g' = (\cos x + \sin x)$
 $g' = (\cos x + \sin x)(\sin x + \cos x) - (\sin x - \cos x)(\cos x - \sin x)$
 $(\sin x + \cos x)^2$

$$= 2 \sin x \cos x + \sin x - (2 \sin x \cos x - \sin x - \cos x)$$


$$(\sin x + \cos x)^{2}$$

$$= \frac{2\cos^2 x + 2\sin^2 x}{(\sin x + \cos x)^2}$$

$$=\frac{2}{(\sin x+\cos x)^2}$$

Ex. 2 Determine the equation of the tangent to $f(x) = -2 \sin x$ at the point where $x = \frac{\pi}{6}$. Need $f'(x) = -2\cos x$ $\lim_{t \to \infty} \lim_{x \to \infty$ $=-2\left(\frac{1}{2}\right)$ = - | $Sub(\frac{\pi}{2},-1)$ and $m=-\sqrt{3}$ Into y=matb $\therefore \quad -) = -63\left(\frac{11}{6}\right) + 6$ $\frac{\sqrt{3}\pi}{\sqrt{2}} - 1 = b$ $\therefore y = -\sqrt{3} + \frac{\sqrt{3}\pi}{\sqrt{2}} - 1$

Ex. 3 Is there a difference between the derivatives of $y = \cos x^2$ and $y = \cos^2 x^2$?

.: YES they are d'ifferent.

Homework page 256 #1 odd, 2 odd, 3de, 5, 8, 10

 $\frac{1}{n}\sin x = ?$

 $\frac{1}{n}\sin x =$

six = 6